
Des femmes, des hommes, des régions, **NOS TESSOURCES...**

TRAVAUX DE RECHERCHE SUR LE SAUMON DES RIVIÈRES SAINT-JEAN ET DE LA TRINITÉ EN 2009

Direction de l'expertise sur la faune et ses habitats

TRAVAUX DE RECHERCHE SUR LE SAUMON DES RIVIÈRES SAINT-JEAN ET DE LA TRINITÉ EN 2009

Par

Vanessa Cauchon et Denis Fournier

Pour le Ministère des Ressources naturelles et de la Faune Secteur Faune

Septembre 2011

Réalisation

Rédaction : Vanessa Cauchon, technicienne de la faune

Denis Fournier, technicien de la faune

Mélanie Dionne, biologiste

Échantillonnage : Denis Fournier, technicien de la faune

Vanessa Cauchon, technicienne de la faune Nicolas Harnois, technicien de la faune Yanick Soulard, technicien de la faune

François Blouin-Maurice, technicien de la faune William Cayer-Blais, technicien de la faune

Sofi Potvin, stagiaire

Vincent Michaud, stagiaire

Andie Packwood Cloutier, étudiant

Nicolas Gagné, étudiant

Conception graphique: Vanessa Cauchon

Lecture d'écailles : Denise Deschamps, technicienne de la faune

Traitement de texte : Vanessa Cauchon

Service de la faune aquatique Direction de l'expertise sur la faune et ses habitats Secteur Faune Québec Ministère des Ressources naturelles et de la Faune 880, chemin Sainte-Foy, 2^e étage Québec (Québec) G1S 4X4

Téléphone : 418 627-8694

978-2-550-62981-8 (PDF)

RÉSUMÉ

Les deux rivières témoins procurent annuellement de l'information de première importance pour la compréhension de l'évolution des stocks de saumon atlantique au Québec.

Le nombre de smolts qui sont partis en mer en 2009 est faible pour les deux rivières. Dans la rivière Saint-Jean, l'estimation de 37 297 smolts est la plus faible dévalaison enregistrée depuis 1989 et est inférieure de 59 % par rapport à la moyenne historique. Dans la rivière de la Trinité, l'estimation de 32 680 smolts est de 40 % sous la moyenne historique. Ces estimations laissent présager une très faible montaison de madeleineaux en 2010. Les caractéristiques des smolts sont semblables à celles observées dans ces rivières au cours des années antérieures.

On constate pour 2009 que la survie des œufs déposés en 2003 jusqu'au stade smolt a été faible dans la rivière Saint-Jean, avec 1,84 %, et que la survie de la cohorte de 2004 est la plus faible enregistrée, avec 1,28 %, alors que la moyenne historique est de 2,70 %. Dans la rivière de la Trinité, la cohorte de 2003 a atteint un bon taux de survie en rivière de 2,94 %, comparativement aux œufs déposés en 2004, dont le taux de survie a été estimé à 2,03 %, ce qui est inférieur à la moyenne historique de 2,32 %.

La montaison de saumons a été faible, avec 1 004 saumons dans la rivière Saint-Jean et 445 saumons dans la rivière de la Trinité, ce qui se trouve ainsi sous leur moyenne respective de 1 113 et 733 saumons des cinq dernières années. Nous observons une faible proportion de madeleineaux dans la montaison, soit 28 % dans la Saint-Jean et 51 % dans la Trinité, comparativement aux moyennes quinquennales respectives de 35 % et 64 %. Une bonne proportion de rédibermarins, soit 72 % et 49 % pour les rivières Saint-Jean et de la Trinité, a été observée en 2009. En ce qui a trait à la survie en mer pour la cohorte de smolts de 2006 de la rivière Saint-Jean et celle estimée pour 2007, le taux a baissé à 0,77 % et à 0,93 %, respectivement, ce qui est en dessous de la moyenne historique de 1,27 %. Quant au taux de survie en mer des smolts de la rivière de la Trinité, il a été de 1,81 % pour ceux de 2007 et il est en moyenne de 2,32 %. Les reproducteurs ont atteint 168 % du seuil de conservation dans la rivière Saint-Jean et 95 % dans la rivière de la Trinité, alors que leur moyenne respective des cinq dernières années est de 193 % et 119 %.

La survie en mer est en baisse depuis 2003 dans la rivière Saint-Jean et tend à s'améliorer légèrement tout en demeurant faible depuis cette même année dans la rivière de la Trinité. La montaison de grands saumons devrait être inférieure à celle de cette année dans les deux rivières, considérant le faible nombre de madeleineaux en 2009. Le seuil de conservation devrait néanmoins être atteint pour la rivière Saint-Jean, mais probablement pas pour la rivière de la Trinité, malgré l'interdiction de la pêche aux grands saumons.

TABLE DES MATIÈRES

1	CO	NTEX	TE	1
	1.1	Zone d	l'étude	2
2	LES	S SMO	LTS	5
	2.1	Métho	dologie	5
	2.2	Résult	ats	6
		2.2.1	Une période de dévalaison normale	6
		2.2.2	Une faible dévalaison	7
		2.2.3	Caractéristiques	7
3	LES	S SAUI	MONS ADULTES	9
	3.1	Métho	dologie	9
	3.2	Résult	ats	. 10
		3.2.1	La pêche sportive : de faibles résultats sur les deux rivières	. 10
		3.2.2	La montaison des adultes : faible montaison de madeleineaux dans les deux rivières	
		3.2.3	Caractéristiques des adultes : petits madeleineaux dans les deux rivières	. 11
		3.2.4	Nombre d'œufs déposés : au-delà et en deçà du seuil de conservation pour les rivières Saint-Jean et de la Trinité	
4	AN	ALYSI	E DES TAUX DE SURVIE	. 14
	4.1		en rivière : faible dans la rivière Saint-Jean et supérieure à la moyenne rivière de la Trinité pour la cohorte 2003	
	4.2		nolt à l'adulte : taux de retour sous la moyenne historique pour les deux s	
5	PR	ÉVISIC	N DES RETOURS POUR 2010	. 16
6	PRO	OJETS	SPÉCIAUX	. 18
	6.1	Projet	sur l'anguille de la rivière Saint-Jean	. 18
		6.1.1	Dévalaison d'anguilles printanières en 2009 estimée à 13 481 anguilles	. 18
		6.1.2	Suivi des populations d'anguilles du bassin versant de la rivière Saint- Jean	
	6.2		aison, montaison et captures d'ombles de fontaine et d'ombles chevaliers omes dans la rivière de la Trinité	
		6.2.1	Une période de dévalaison normale pour l'omble de fontaine	. 19

		6.2.2	Estimation de la dévalaison : 10 109 ombles de fontaine	20
		6.2.3	Caractéristiques des ombles en dévalaison	20
		6.2.4	Retour en rivière : 1 381 ombles de fontaine, 1 omble chevalier	20
		6.2.5	L'exploitation de l'omble de fontaine par la pêche sportive : 485 ombles capturés en 2009	
	6.3	Isotope	es stables chez les smolts et les ombles chevaliers : poursuite des travaux	21
	6.4	Projet	SALSEA	22
7	CO	NCLUS	SION	24
RF	EME	RCIEN	MENTS	25
GI	LOS	SAIRE		26
LI	STE	DES R	ÉFÉRENCES	27
TA	BL	EAUX.		28
ΕI	GH	RES		48

LISTE DES TABLEAUX

Tableau I.	Captures de smolts en dévalaison printanière dans la rivière Saint-Jean en 2009
Tableau II.	Captures de smolts en dévalaison printanière dans la rivière de la Trinité en 2009
Tableau III.	Caractéristiques des smolts dans la rivière Saint-Jean en 2009 31
Tableau IV.	Caractéristiques des smolts dans la rivière de la Trinité en 2009 32
Tableau V.	Estimation de la dévalaison et caractéristiques des smolts de la rivière Saint-Jean de 1989-2009 et de la rivière de la Trinité de 1984-2009 33
Tableau VI.	Bilan de l'exploitation des saumons dans la rivière Saint-Jean de 1984- 2009
Tableau VII.	Bilan de l'exploitation des saumons dans la rivière de la Trinité de 1984-2009
Tableau VIII.	Montaison totale des saumons par catégorie de groupe d'âge en mer dans la rivière Saint-Jean de 1984-2009
Tableau IX.	Montaison totale des saumons par catégorie de groupe d'âge en mer dans la rivière de la Trinité de 1984-2009
Tableau X.	Caractéristiques des saumons échantillonnés dans la rivière Saint-Jean en 2009
Tableau XI.	Caractéristiques des saumons échantillonnés dans la rivière de la Trinité en 2009
Tableau XII.	Caractéristiques des saumons échantillonnés dans la rivière Saint-Jean de 1983-2009
Tableau XIII.	Caractéristiques des saumons échantillonnés dans la rivière de la Trinité de 1980-2009
Tableau XIV.	Survie en rivière, de l'œuf au smolt, dans les rivières Saint-Jean et de la Trinité
Tableau XV.	Survie en mer, du smolt jusqu'à l'adulte, dans les rivières Saint-Jean et de la Trinité
Tableau XVI.	Captures et estimations d'anguilles en dévalaison printanière dans la rivière Saint-Jean de 2001-2009
Tableau XVII.	Captures et recaptures d'ombles de fontaine en dévalaison dans la rivière de la Trinité en 2009
Tableau XVIII.	Caractéristiques des ombles chevaliers échantillonnés en dévalaison dans la rivière de la Trinité de 1998-2009
Tableau XIX.	Bilan de l'exploitation et caractéristiques des ombles de fontaine anadromes dans la rivière de la Trinité de 1997-2009

LISTE DES FIGURES

Figure 1.	La rivière Saint-Jean dans son contexte géographique	49
Figure 2.	La rivière de la Trinité dans son contexte géographique	50
Figure 3.	Précipitations et température journalière de l'air et de l'eau dans la rivière Saint-Jean en 2009	
Figure 4.	Précipitations et température journalière de l'air et de l'eau dans la rivière de la Trinité en 2009	
Figure 5.	Dévalaison des smolts dans la rivière Saint-Jean en 2009	53
Figure 6.	Dévalaison des smolts dans la rivière de la Trinité en 2009	54
Figure 7.	Comparaison de la longueur totale moyenne journalière des smolts dans les rivières Saint-Jean et de la Trinité en 2009	
Figure 8.	Classes de longueur des smolts mesurés vivants et intervalles de classes de longueur en fonction de l'âge des smolts échantillonnés dans les rivières Saint-Jean et de la Trinité en 2009	
Figure 9.	Relation longueur-poids des smolts des rivières Saint-Jean et de la Trinité en 2009	
Figure 10.	Classes de longueur et intervalles de classes de longueur en fonction de l'âge des saumons adultes échantillonnés des rivières Saint-Jean et de la Trinité en 2009.	ļ
Figure 11.	Poids moyen des saumons des rivières Saint-Jean et de la Trinité de 1983-2009	
Figure 12.	Longueur à la fourche moyenne des saumons des rivières Saint-Jean et de la Trinité de 1983-2009	
Figure 13.	Taux de survie en rivière, de l'œuf au smolt, des rivières Saint-Jean et de la Trinité.	
Figure 14.	Taux de survie en mer, du smolt à l'adulte, des rivières Saint-Jean et de la Trinité	
Figure 15.	Relation entre la montaison de madeleineaux et celle des grands saumons un an plus tard dans la rivière Saint-Jean de 1981-2009	
Figure 16.	Relation entre la montaison de madeleineaux et celle des grands saumons un an plus tard, incluant la pêche commerciale, dans la rivière de la Trinité de 1979-2009	
Figure 17.	Anguilles capturées dans les trappes rotatives de la rivière Saint-Jean de 2001-2009	
Figure 18.	Classes de longueur des anguilles capturées en dévalaison dans les trappes rotatives de la rivière Saint-Jean en 2009	

Figure 19.	Longueur totale moyenne et captures journalières d'ombles de fontaine lors de la dévalaison des smolts dans la rivière de la Trinité en 2009
Figure 20.	Classes de longueur des ombles de fontaine et des ombles chevaliers mesurés lors de la dévalaison dans la rivière de la Trinité en 2009
Figure 21.	Nombre d'ombles de fontaine et d'ombles chevaliers anadromes en montaison enregistrés quotidiennement à la barrière de comptage dans la rivière de la Trinité en 2009
Figure 22.	Nombre d'ombles de fontaine anadromes en montaison enregistrés annuellement à la passe migratoire, présentés par classes de taille, dans la rivière de la Trinité de 1985-2009
Figure 23.	Nombre d'ombles chevaliers anadromes en montaison enregistrés annuellement à la passe migratoire dans la rivière de la Trinité de 1999-2009

LISTE DES ANNEXES

(Sur support informatique seulement)

Annexe I.	Mesures de température et de niveau d'eau dans la rivière Saint-Jean en 2009
Annexe II.	Mesures de température et de niveau d'eau dans la rivière de la Trinité en 2009
Annexe III.	Captures quotidiennes des espèces non visées lors de la dévalaison dans la rivière Saint-Jean en 2009
Annexe IV.	Captures quotidiennes des espèces non visées lors de la dévalaison dans la rivière de la Trinité en 2009
Annexe V.	Longueur des smolts dans la rivière Saint-Jean en 2009
Annexe VI.	Longueur des smolts dans la rivière de la Trinité en 2009
Annexe VII.	Mesures morphométriques et lecture d'âge des smolts dans la rivière Saint- Jean en 2009
Annexe VIII.	Mesures morphométriques et lecture d'âge des smolts dans la rivière de la Trinité en 2009
Annexe IX.	Mesures morphométriques et lecture d'âge des saumons échantillonnés dans la rivière Saint-Jean en 2009
Annexe X.	Mesures morphométriques et lecture d'âge des saumons échantillonnés dans la rivière de la Trinité en 2009
Annexe XI.	Inventaire des reproducteurs dans la rivière Saint-Jean en 2009
Annexe XII.	Distribution des saumons à la mi-saison, par secteur, dans la rivière Saint- Jean de 1989-2009
Annexe XIII.	Montaison à la barrière de comptage et captures quotidiennes dans la rivière de la Trinité en 2009
Annexe XIV.	Longueur totale approximative des saumons enregistrés à la barrière de comptage dans la rivière de la Trinité en 2009
Annexe XV.	Longueur totale approximative des ombles de fontaine anadromes enregistrés à la barrière de comptage dans la rivière de la Trinité en 2009
Annexe XVI.	Longueur totale approximative des autres espèces enregistrées à la barrière de comptage dans la rivière de la Trinité en 2009
Annexe XVII.	Longueur des anguilles capturées en dévalaison dans la rivière Saint Jean en 2009
Annexe XVIII.	Longueur des ombles de fontaine capturés et recapturés en dévalaison dans la rivière de la Trinité en 2009

- Annexe XIX. Longueur des ombles chevaliers capturés relâchés et recapturés en dévalaison dans la rivière de la Trinité en 2009
- Annexe XX. Mesures morphométriques des ombles chevaliers anadromes échantillonnés lors de la dévalaison dans la rivière de la Trinité en 2009
- Annexe XXI. Mesures morphométriques et résultat de l'analyse des isotopes de smolts dans la rivière Saint-Jean en 2009
- Annexe XXII. Mesures morphométriques et résultat de l'analyse des isotopes de smolts dans la rivière de la Trinité en 2009

1 CONTEXTE

Les travaux de recherche sur le saumon se sont poursuivis en 2009 sur les deux rivières témoins du ministère des Ressources naturelles et de la Faune du Québec : les rivières Saint-Jean et de la Trinité. Ces travaux y ont été entrepris, il y a près de 30 ans, dans le but principal de faire l'observation de l'évolution de la dynamique des populations en situation naturelle, sans intervention qui viendrait modifier le milieu.

L'information tirée de ces rivières a été utilisée à diverses fins au cours des dernières années, notamment pour réévaluer ce que nous considérons comme « le seuil de conservation » pour chacune des rivières du Québec. L'observation de plusieurs années nous permet, en effet, de calculer quel est le nombre minimal d'œufs qu'il faut conserver dans une rivière pour en tirer le plein potentiel de production. Il faut bien noter qu'il s'agit d'un nombre minimal et non pas nécessairement d'un objectif que l'on souhaiterait atteindre, ce dernier étant plus élevé que le seuil de conservation sans toutefois excéder le nombre d'œufs au-delà duquel la production de la rivière risque de décliner (Caron *et al.*, 1999).

Les inventaires des habitats de juvéniles ont également permis de déterminer un indice de qualité d'habitat (IQH). Il s'agit en fait d'une valeur calculée en fonction de certaines caractéristiques que possède chaque section d'une rivière et qui indique la qualité relative de l'habitat pour la production de juvéniles. Les paramètres utilisés sont le type d'écoulement (seuil, rapide, méandre, chenal), la composition granulométrique de la section, la largeur de la section et la situation de cette rivière dans un gradient nord-sud. La combinaison de ces éléments nous donne une valeur entre 0 et 1 que l'on multiplie par la superficie de la section pour obtenir le nombre d'unités de production (UP) que contient une section de rivière. Lorsque l'on additionne les unités de chaque section, on obtient le nombre total d'UP de la rivière. Cette valeur multipliée par 1,67 donne généralement le nombre d'œufs requis pour atteindre le seuil de conservation dans chacune des rivières du Québec (Caron *et al.*, 1999). Les quelques exceptions viennent de six rivières où nous avons pu calculer le seuil de conservation à l'aide d'une longue série de données sur les

1

montaisons de saumons et de quelques rivières de grande dimension où il a été jugé prudent de fixer le nombre d'œufs requis à un niveau supérieur.

1.1 Zone d'étude

La rivière Saint-Jean (48° 46' 08" N., 64° 26' 51" O.) est la plus grande des deux rivières témoins. Située à l'extrémité est de la Gaspésie, elle draine un bassin de 1 134 km² et la longueur de son cours principal, depuis sa source jusqu'à son estuaire, est de 115 km (figure 1). La superficie totale de la rivière utilisée pour l'élevage des juvéniles est de 2,3 millions de mètres carrés et le nombre d'UP est de 1,51 million. Le seuil de conservation, c'est-à-dire le nombre minimal d'œufs que l'on veut conserver avant de permettre l'exploitation des grands saumons, a été calculé au moyen de la série de données disponibles pour cette rivière et d'une analyse de Stock-Recrutement (S-R). La dépose minimale d'œufs visée est de 1,88 million pour cette rivière (Caron *et al.*, 1999).

La rivière coule sur de la roche sédimentaire calcaire, ce qui contribue à donner une grande conductivité à l'eau et à maintenir le pH basique. L'écoulement de la rivière est rapide sur toute sa longueur, la granulométrie grossière et les faciès d'écoulement dominants sont les seuils. Dans la partie inférieure de son cours, la présence de la roche mère est importante, voire dominante dans plusieurs sections. En amont de la limite de la zone d'influence des marées, à 5 km de la mer, la rivière se divise en un réseau de canaux dont les plus importants sont presque complètement obstrués par des embâcles naturels de troncs d'arbres. Finalement, la rivière forme un barachois de 5,4 km² pour ensuite se jeter dans la mer. Le barachois, peu profond, est soumis à l'influence des marées, ce qui cause, entre autres, des variations de salinité. Cet habitat n'est toutefois pas utilisé par les tacons en période estivale. La très grande majorité du bassin de drainage est recouvert d'une sapinière à bouleau jaune, dans la partie basse de la rivière, et d'une sapinière à bouleau blanc dans la partie supérieure.

La rivière de la Trinité (49° 25' 05" N., 67° 18' 16" O.) est située sur la rive nord du Saint-Laurent, à mi-chemin entre les villes de Baie-Comeau et de Port-Cartier (figure 2). Cette rivière draine un bassin de 562 km², soit environ la moitié de la taille de celui de la Saint-Jean, et se jette directement dans les eaux du golfe du Saint-Laurent. La longueur de son cours principal est de 80 km, mais le saumon fréquente uniquement les 70 premiers kilomètres. Les saumons utilisent habituellement une passe migratoire pour franchir le barrage situé à environ 150 m de l'embouchure. En 2009, le barrage étant en reconstruction, les poissons ont emprunté un canal de dérivation, et une barrière de comptage installée plus en amont a été utilisée pour compter les poissons en montaison. La superficie totale de la rivière qui sert à l'élevage des juvéniles est de 2,11 millions de mètres carrés et le nombre d'UP est de 0,99 million, soit environ les deux tiers du nombre d'unités de la rivière Saint-Jean. Le seuil de conservation calculé au moyen de la courbe S-R est de 1,63 million d'œufs.

La rivière coule sur les roches granitiques du Bouclier canadien. La conductivité de l'eau est faible et le pH est acide. La rivière est marquée par une succession d'écoulements rapides et plus lents; le sable y est omniprésent, sauf dans les zones d'écoulement rapide. L'ensemble du bassin de drainage est recouvert d'une sapinière à bouleau blanc.

Outre le saumon atlantique, on trouve l'omble de fontaine (Salvelinus fontinalis), l'anguille d'Amérique (Anguilla rostrata) et l'épinoche à trois épines (Gasterosteus aculeatus) dans les deux rivières. La lamproie marine (Petromyzon marinus) fraie aussi dans la rivière Saint-Jean, mais on ne possède pas de telle donnée en ce qui a trait à la rivière de la Trinité. Les autres espèces y sont très rares ou limitées à des habitats particuliers. Dans la rivière Saint-Jean, par exemple, quelques spécimens de truite arc-en-ciel (Oncorhynchus mykiss) ont été capturés. Dans la rivière de la Trinité, on trouve une petite population d'omble chevalier (Salvelinus alpinus) anadrome, de meunier rouge (Catastomus catastomus), de meunier noir (C. commersoni), d'épinoche à quatre épines (Apeltes quadracus) et d'épinoche à neuf épines (Pungitius pungitius).

Les deux rivières présentent un régime hydrique et thermique assez semblable dans leur ensemble. La glace et la neige recouvrent généralement les rivières du mois de décembre au mois d'avril. La débâcle de même que le réchauffement printanier se produisent toutefois

plus tôt dans la rivière Saint-Jean. Les données sur la température de l'air et de l'eau sont recueillies par un thermographe à partir du mois de mai jusqu'en octobre. Ces données sont présentées aux figures 3 et 4. La température de l'eau est également enregistrée pendant la saison froide (données non publiées, MRNF). À l'hiver 2008-2009, elle est demeurée près de 0 °C du 7 décembre au 10 avril dans la rivière Saint-Jean et du 21 novembre au 23 avril dans la rivière de la Trinité. Dans les deux rivières, la température de l'eau a suivi les normales de saison à l'exception du début juin et des derniers jours du mois d'août, où elle était plus fraîche. Le niveau d'eau de la rivière Saint-Jean s'est maintenu dans les normes, alors que pour la rivière de la Trinité, aucune donnée sur le niveau d'eau n'a été recueillie. Toutefois, étant donné le bris du barrage de rétention d'eau au printemps ainsi que les travaux exécutés en été pour le remplacer, le niveau d'eau dans la partie aval de cette rivière est demeuré bas tout au long de la saison. Une crue est cependant survenue dans cette dernière du 1^{er} au 7 juillet à la suite de précipitations ayant atteint 86 mm le 30 juin.

2 LES SMOLTS

2.1 Méthodologie

L'estimation du nombre de smolts se fait par une méthode de « capture-recapture ». Des smolts sont capturés dans la zone de capture, marqués (M) et relâchés. Une zone de recapture, située en aval, permet la capture (C) et l'observation du nombre d'individus recapturés (R). La section de rivière située entre les deux zones permet un mélange homogène des smolts capturés et non capturés dans la zone de capture. Cela nous permet d'estimer, pour l'ensemble de la dévalaison, la population (N) de smolts au moyen de l'estimateur de Petersen (modifié par Chapman, 1951) de la façon suivante :

$$N = [(M + 1) (C + 1)] / (R + 1)$$
 (Ricker, 1980).

Sur la rivière Saint-Jean, une demi-barrière de comptage munie d'un piège sert d'engin dans la zone de capture, sur la rive droite, au kilomètre 8 (kilomètre de rivière depuis l'eau saumâtre). Dans la zone de recapture, deux trappes rotatives sont installées côte à côte au kilomètre 6. La même méthode est utilisée sur la rivière de la Trinité. Une première trappe rotative est installée dans la zone de capture située au kilomètre 9 et la seconde est mise à l'eau dans la zone de recapture, au kilomètre 3,2.

Dans les deux rivières, l'ablation de la nageoire adipeuse a été effectuée sur tous les smolts capturés en dévalaison pour le marquage des individus entrant dans le calcul de capture-recapture. De plus, dans la rivière Saint-Jean, tous les smolts ont été étiquetés afin qu'il soit possible de les reconnaître parmi les captures en mer. Pour ce faire, une microétiquette a été implantée dans la partie cartilagineuse du rostre des smolts à l'aide d'un injecteur (modèle MKIV de la compagnie Northwest Marine Technology). Le numéro des microétiquettes permet de retracer le lot (Agency 13). Le but de ce marquage est de pouvoir reconnaître ces smolts dans les captures de l'équipe du projet SALSEA, un projet international, dont le volet nord-américain est coordonné par Pêches et Océans Canada, et dont le but est de comprendre les facteurs qui affectent la survie en mer du saumon atlantique.

Dans chacune des rivières, nous mesurons chaque jour la longueur totale de 50 smolts vivants choisis au hasard. De plus, quelques smolts prélevés quotidiennement dans la zone de recapture, pour un total d'environ 200 smolts, sont échantillonnés afin de déterminer leurs caractéristiques. La longueur totale et à la fourche (\pm 1 mm), le poids (\pm 0,1 g) et le sexe sont notés et des écailles sont prélevées pour la détermination de l'âge.

Une collecte annuelle de matériel génétique sur les smolts a débutée en 2006 dans les deux rivières témoins afin d'étudier les modifications génétiques des populations de saumon à long terme. Tous les ans, 100 smolts sont échantillonnés dans chacune des rivières témoins, et ce, sur l'ensemble de la période de dévalaison. La nageoire adipeuse des spécimens est prélevée et conservée dans de l'alcool à 95 %. À la fin de la saison, l'alcool contenu dans les fioles est changé et les échantillons sont congelés.

2.2 Résultats

2.2.1 Une période de dévalaison normale

Le déclenchement de la dévalaison coïncide avec le réchauffement printanier et se produit habituellement lorsque la température de l'eau approche les 10 °C. D'autres facteurs entrent également en ligne de compte, comme le débit de la rivière et la date à laquelle se produit le réchauffement. Un réchauffement très hâtif n'enclenche pas nécessairement toute la dévalaison, de même qu'un printemps tardif verra des smolts quitter la rivière à des températures plus basses.

La dévalaison se produit toujours plus tôt dans la rivière Saint-Jean que dans la rivière de la Trinité. Dans la rivière Saint-Jean, les captures de smolts se sont concentrées du 20 au 23 mai et du 29 mai au 4 juin, période interrompue par des températures plus fraîches, où près de 70 % des smolts ont été capturés (tableau I). Dans la rivière de la Trinité, la dévalaison s'est très bien déroulée et c'est du 7 au 10 juin et du 14 au 19 juin que la majorité des smolts a été capturée (tableau II).

2.2.2 Une faible dévalaison

Les données sur le nombre de captures et de poissons marqués quotidiennement sont présentées aux tableaux I et II ainsi qu'aux figures 5 et 6. Dans la rivière Saint-Jean, nous estimons à 37 297 le nombre de smolts ayant descendu la rivière au printemps 2009, soit 59 % de moins que la moyenne historique, ce qui représente la plus faible dévalaison enregistrée. Dans la rivière de la Trinité, l'estimation obtenue est de 32 680 smolts, soit 40 % sous la moyenne historique.

2.2.3 Caractéristiques

Les caractéristiques des smolts récoltés en 2009 sont présentées aux tableaux III et IV. Nous obtenons la longueur moyenne des smolts de deux sources, soit les poissons échantillonnés et ceux mesurés vivants, remis à l'eau. Dans la rivière Saint-Jean, la longueur totale moyenne des 200 smolts échantillonnés est de 126 mm et celle des 1 649 smolts mesurés vivants est de 129 mm. Dans la rivière de la Trinité, la longueur totale moyenne est de 133 mm pour les 228 smolts échantillonnés et de 132 mm pour les 1 191 smolts mesurés vivants. On remarque que la taille moyenne journalière des smolts a eu tendance à s'accroître durant la saison dans les deux rivières, ce que nous observons habituellement (figure 7).

On trouve annuellement une différence de taille, bien que minime, entre les smolts de ces deux rivières. Contrairement à ce que l'on pourrait croire, les smolts de la rivière Saint-Jean, dont la taille moyenne historique est de 125 mm, sont en moyenne plus âgés (3,43 ans) que ceux de la rivière de la Trinité (2,98 ans), qui sont pourtant de taille supérieure, mesurant en moyenne 132 mm (tableau V). Dans la rivière Saint-Jean, les smolts de 3 et 4 ans sont en proportion équivalente (52 % et 41 %) dans la dévalaison, alors que dans la rivière de la Trinité, la classe d'âge de 3 ans domine nettement, avec 78 % des effectifs.

Chez les smolts, on trouve toujours plus de femelles que de mâles. La moyenne historique du rapport des sexes chez les smolts est de 64 % en faveur des femelles dans la rivière Saint-Jean et de 60 % dans la rivière de la Trinité (tableau V). Nous avons observé respectivement 62 % et 60 % de femelles dans la dévalaison en 2009, ce qui est similaire aux moyennes historiques des deux rivières (tableau V).

Le facteur de condition de Fulton (K) (100 000 * poids / longueur à la fourche³; Thompson, 1942) donne un indice de la condition générale du poisson. Une valeur près de 1 indique une bonne condition d'embonpoint. En 2009, il était de 0,84 dans la rivière Saint-Jean et de 0,92 dans la rivière de la Trinité, ce qui se rapproche de la moyenne historique de 0,88 et 0,92 respectivement (tableau V).

La taille des smolts n'est pas révélatrice de leur âge; en effet, la structure de taille présente une distribution normale sans égard à l'âge des smolts (figure 8). La taille est possiblement liée au déclenchement de la smoltification chez le saumon atlantique. Lorsque les juvéniles atteignent une longueur à la fourche d'environ 100 mm au cours d'une saison de croissance, ils sont généralement prêts à quitter la rivière le printemps suivant. La figure 9 révèle que la relation longueur-poids chez les smolts est similaire dans les deux rivières.

3 LES SAUMONS ADULTES

3.1 Méthodologie

Dans la rivière Saint-Jean, la prise de données morphométriques et le prélèvement d'écailles se font lors de l'enregistrement des captures par la pêche sportive. Depuis 2007, la conservation des grands saumons a été permise à partir du 1^{er} août, pour un maximum de 50 saumons, afin d'obtenir des données précises de poids, de longueur, de sexe et d'âge sur ces spécimens. Ces données sont également recueillies sur les saumons trouvés morts. Après la fin de la montaison, un inventaire en apnée permet de compter les saumons présents dans la rivière par catégorie (madeleineaux et rédibermarins). Aucun ajustement n'est fait pour tenir compte des poissons qui auraient pu échapper aux observateurs; un nombre minimal de géniteurs est donc utilisé pour nos calculs. Le nombre de saumons revenus en rivière est obtenu en ajoutant à ce compte tous les poissons capturés et gardés ou trouvés morts dans la rivière avant l'inventaire.

Dans la rivière de la Trinité, les saumons sont habituellement comptés lors de leur passage dans la passe migratoire. Des mesures temporaires ont été prises en 2009 seulement, en raison de la reconstruction du barrage et de la passe migratoire, qui devraient être fonctionnels dès 2010. Une barrière de comptage a donc été installée en amont du chantier afin de suivre les espèces en montaison. La longueur totale approximative de chaque saumon a été obtenue grâce à une règle graduée par 10 cm qui était située sur le plancher de la cage; la date ainsi que l'heure du passage étaient notées. Les spécimens de moins de 65 cm étaient classés dans la catégorie des madeleineaux, les autres, comme grands saumons. En plus de la barrière de comptage, des mesures et des prélèvements d'écailles ont été effectués sur les madeleineaux lors de l'enregistrement des captures sportives. En 2002 et depuis 2004, la remise à l'eau de tous les grands saumons est obligatoire sur cette rivière. Des écailles et des mesures de longueur plus précises ont été prises sur un certain nombre de grands saumons qui ont franchi la barrière. Le nombre de saumons revenus en rivière a été obtenu en ajoutant aux montaisons toutes les captures et le nombre de poissons trouvés morts dans le secteur aval de la barrière de comptage.

3.2 Résultats

3.2.1 La pêche sportive : de faibles résultats sur les deux rivières

Il a fallu aux pêcheurs 1 695 jours de pêche sur la rivière Saint-Jean pour récolter 96 madeleineaux et 3 rédibermarins, et remettre à l'eau 409 saumons. Le succès de pêche est donc de 0,06 saumon gardé par jour, mais de 0,30 saumon capturé, remis ou non à l'eau, ce qui est inférieur à la moyenne des cinq dernières années (tableau VI).

Sur la rivière de la Trinité, il a fallu 627 jours de pêche pour récolter 23 madeleineaux et remettre à l'eau 20 saumons, pour un succès de pêche de 0,04 saumon gardé par jour, ce qui est inférieur à la moyenne des cinq dernières années de 0,12 saumon par jour (tableau VII).

3.2.2 La montaison des adultes : faible montaison de madeleineaux dans les deux rivières

Dans la rivière Saint-Jean, le dénombrement des géniteurs en fin de saison s'est déroulé le 11 août, ce qui est plus tôt qu'à l'habitude, mais les conditions climatiques et de visibilité étaient favorables. On n'a pas fait d'inventaire dans les fosses en amont de la barrière de rétention, mais la structure a été installée assez tôt en saison et aucun saumon n'a été trouvé au-delà de celle-ci lors des entretiens, ce qui minimise le nombre de saumons possiblement oubliés. Plusieurs mortalités sont survenues tout au long de la saison en raison d'une infection encore non identifiée. Les saumons morts étaient récoltés fréquemment par des auxiliaires de la faune en canot afin qu'ils soient prélevés et dénombrés. Cependant, puisque les saumons morts sont souvent victimes de prédation ou ont pu se retrouver dans des secteurs difficilement accessibles aux auxiliaires, le nombre de saumons présents dans la rivière peut donc avoir été plus élevé que celui rapporté ici. La prévision des retours était de 188 madeleineaux et de 1 152 grands saumons (Fournier et Cauchon, 2009). Il est plutôt revenu 282 madeleineaux et 722 grands saumons pour un total de 1 004 saumons (tableaux VI et VIII). Comparativement à la moyenne des cinq dernières années, la

montaison de madeleineaux a été de 28 % inférieure, mais celle des grands saumons a été semblable (tableau VI).

Dans la rivière de la Trinité, la barrière de comptage a été en fonction du 10 juin au 14 août, soit quelques jours de moins que d'habitude, mais très peu de saumons sont capturés en dehors de cette période. De plus, la barrière n'a pas été en fonction du 1^{er} au 7 juillet en raison d'une crue, alors que le 28 juillet l'eau passait par-dessus la barrière à quelques endroits, ce qui fait en sorte que le nombre obtenu grâce au dénombrement est minimal. La perte de captures occasionnée par la crue du début juillet a été estimée selon la proportion moyenne de saumons observés durant cette période par rapport à l'ensemble de la saison depuis 1992. Nous avons donc ajouté 78 saumons à la montaison totale se soldant à 445 saumons, soit 229 madeleineaux et 216 grands saumons, ce qui est inférieur de 39 % à la moyenne des cinq dernières années (tableaux VII et IX).

3.2.3 Caractéristiques des adultes : petits madeleineaux dans les deux rivières

Les caractéristiques des saumons adultes récoltés durant la saison 2009 sont présentées aux tableaux X et XI ainsi qu'à la figure 10. La synthèse de ces données depuis 1980 est présentée aux tableaux XII et XIII.

La longueur des madeleineaux a diminué légèrement en 2009, avec 56,1 cm dans la rivière Saint-Jean et 54,9 cm dans la rivière de la Trinité, demeurant toutefois au-dessus de leur moyenne historique respective de 55,0 cm et 54,0 cm. Le poids moyen des madeleineaux a fortement diminué cette année-là, atteignant 1,59 kg et 1,72 kg dans les rivières Saint-Jean et de la Trinité, alors que des poids aussi faibles n'ont pas été observés depuis 1995 et 1992 respectivement (figures 11 et 12). La capture de 3 grands saumons à la pêche sportive de même que les 105 rédibermarins trouvés morts dans la rivière Saint-Jean ont permis de recueillir des données sur leurs caractéristiques. Il faut noter que certaines longueurs des poissons trouvés morts ont été conservées bien qu'elles aient été approximatives en raison de l'état des poissons, alors que les poids ont tous été rejetés. Les dibermarins avaient une longueur moyenne de 77,6 cm dans cette rivière, ce qui est au-dessus de la moyenne

historique (tableaux X et XII). Dans la rivière de la Trinité, l'obligation de remettre à l'eau tous les grands saumons de même que l'échantillonnage dans la passe migratoire ne permettent pas d'obtenir de données quant au poids moyen des grands saumons. La longueur des dibermarins était similaire à la moyenne historique, avec 73,7 cm (tableaux XI et XIII).

Concernant la proportion de femelles chez les madeleineaux, aucune femelle n'a été échantillonnée dans la rivière Saint-Jean, alors qu'elle était de 5,3 % dans la rivière de la Trinité, soit en dessous de la moyenne historique, qui est de 1,4 % et 8,5 % pour les rivières Saint-Jean et de la Trinité respectivement (tableaux XII et XIII).

3.2.4 Nombre d'œufs déposés : au-delà et en deçà du seuil de conservation pour les rivières Saint-Jean et de la Trinité

L'évaluation du nombre d'œufs déposés en rivière se base sur l'évaluation du nombre de géniteurs et de leurs caractéristiques de poids et de fécondité (Caron, 1990). Les caractéristiques des madeleineaux et des grands saumons sont obtenues à partir des observations faites sur les poissons qui sont capturés ou échantillonnés dans la passe migratoire. Nous avons choisi de prendre les caractéristiques moyennes de plusieurs années au lieu d'utiliser des caractéristiques différentes chaque année, puisque le faible nombre de saumons échantillonnés certaines années entraînerait des biais importants. Toutefois, les changements notés dans les caractéristiques des saumons ont occasionné, en 1992, un ajustement des valeurs utilisées, à savoir le pourcentage de femelles et le poids moyen des reproducteurs (tableaux XII et XIII). Les valeurs standards de 2 430 œufs/kg pour les madeleineaux et de 1 535 pour les grands saumons sont utilisées pour le calcul de la fécondité (Caron, 1990). Le calcul du nombre d'œufs déposés tient compte du nombre de géniteurs, de la proportion de femelles, du poids moyen et de la valeur standard d'œufs par kilogramme, à la fois pour les madeleineaux et les grands saumons.

Selon ces calculs, les géniteurs de la rivière Saint-Jean, au nombre de 182 madeleineaux et de 614 grands saumons (3 et 433 femelles respectivement), ont déposé 3,16 millions d'œufs

lors de la fraie, ce qui représente 168 % du seuil de conservation de cette rivière (tableau VI). Dans la rivière de la Trinité, les 206 madeleineaux et les 214 grands saumons (24 et 201 femelles respectivement) ont déposé 1,54 million d'œufs, soit 95 % du seuil de conservation (tableau VII).

4 ANALYSE DES TAUX DE SURVIE

Les évaluations annuelles de smolts et de retours des adultes nous permettent d'estimer les taux de survie en rivière, de l'œuf au smolt, de même que les taux de survie en mer, du smolt à l'adulte.

4.1 Survie en rivière : faible dans la rivière Saint-Jean et supérieure à la moyenne dans la rivière de la Trinité pour la cohorte 2003

Les œufs déposés en rivière donnent des smolts qui ne migrent pas tous vers la mer la même année. Pour calculer le nombre de smolts produits par la fraie d'une année, par exemple celle de 2004 dans la rivière Saint-Jean, il faut additionner le nombre de smolts qui avaient deux ans en 2007, trois ans en 2008, quatre ans en 2009 et le nombre de ceux de cinq ans, qui, dans notre exemple, n'était pas encore connu (tableau XIV). Puisque le nombre de smolts de cinq ans est assez faible, nous pouvons l'estimer en utilisant la moyenne de 1989 à 2008 afin d'obtenir un nombre de smolts produits pour 2004. L'erreur générée par cette estimation est sans doute minime, et cette dernière nous permet d'obtenir le taux de survie un an plus tôt.

La moyenne historique du taux de survie, de l'œuf au smolt, est de 2,70 % (de 1,28 % à 4,85 %) dans la rivière Saint-Jean et de 2,32 % (de 1,20 % à 4,82 %) dans la rivière de la Trinité (tableau XIV, figure 13). Le taux de survie en rivière de la dernière cohorte, celle de 2003, a été inférieur à la moyenne historique de la rivière Saint-Jean, avec 1,84 %. Comme mentionné précédemment, il est possible d'évaluer le taux de survie pour la cohorte de 2004 en estimant le nombre de smolts de cinq ans, puisque cette classe d'âge constitue une très faible proportion de la population. La cohorte de 2004 a donc un taux de survie estimé de 1,28 %, ce qui représente la plus faible survie depuis le début de l'étude. Dans la rivière de la Trinité, le taux de survie est de 2,94 % pour la cohorte de 2003, ce qui est supérieur à la moyenne historique. En estimant le nombre de smolts de cinq ans, nous obtenons un taux de survie estimé de 2,03 % pour la cohorte de 2004. Notons que l'on utilise 2,5 % comme

taux de survie normalisé en rivière, ce qui est très près des taux moyens observés dans nos rivières témoins (Caron et Le Bel, 1991).

4.2 Du smolt à l'adulte : taux de retour sous la moyenne historique pour les deux rivières

Les smolts qui migrent vers la mer ne reviennent pas tous la même année; les madeleineaux reviennent un an plus tard et les dibermarins, deux ans après leur départ de la rivière. Dans les deux rivières, il n'y a que très rarement des saumons qui demeurent trois ans en mer avant de venir frayer pour une première fois. La durée du séjour en mer est très différente d'une rivière à l'autre; la majorité des saumons revient dans la rivière Saint-Jean après un séjour de deux ans en mer alors que, dans la rivière de la Trinité, la majorité revient après une seule année de migration en mer. Le plus long séjour en mer des smolts de la rivière Saint-Jean se fait nécessairement au détriment de leur survie, mais il faut considérer que, lors de leur retour, ces saumons sont de plus grande taille et ont une fécondité moyenne plus élevée que ceux ayant passé un an en mer.

Le déclin général des taux de survie en mer est présent aussi bien chez les madeleineaux que chez les dibermarins des deux rivières, principalement depuis la cohorte de smolts de 1991 (figure 14). La survie des smolts partis en migration en 2006 dans la rivière Saint-Jean a été de 0,77 % (madeleineaux : 0,27 %, dibermarins : 0,50 %; tableau XV). Pour la cohorte de 2007, si l'on estime la faible proportion de tribermarins, nous obtenons un taux de retour de 0,93 %, ce qui est sous la moyenne historique, estimée à 1,27 %. Pour la rivière de la Trinité, le taux de survie en mer atteint 1,81 % pour la cohorte de 2007 (madeleineaux : 1,47 %, dibermarins : 0,34 %), alors que la moyenne historique est de 2,32 % (tableau XV, figure 14).

Concernant les taux de retour des smolts de 2008 revenus comme madeleineaux l'année suivante, on note que le taux augmente dans la rivière Saint-Jean avec 0,62 %, alors que la moyenne historique est de 0,43 %. Dans la rivière de la Trinité, le taux de retour atteint 0,66 %, ce qui est inférieur à la moyenne historique de 1,38 %.

5 PRÉVISION DES RETOURS POUR 2010

Il est toujours difficile d'anticiper les retours de saumons, particulièrement lorsqu'on enregistre des variations importantes des taux de survie en mer. Néanmoins, les prévisions de retours dans les rivières témoins se sont avérées assez justes au cours des dernières années, surtout depuis l'ajustement des modèles de prévision pour refléter la baisse de survie en mer survenue depuis 1992.

La prévision des retours de madeleineaux est la plus difficile à faire puisqu'elle se base uniquement sur la production de smolts et le taux de survie en mer, taux qui varie énormément d'une année à l'autre. Pour les prévisions relatives aux grands saumons, nous avons observé une corrélation entre le nombre de madeleineaux et le nombre de grands saumons qui reviennent l'année suivante. Puisque la survie en mer s'est dégradée, nous utilisons uniquement les données recueillies depuis 1992.

Ainsi, dans la rivière Saint-Jean, la survie moyenne depuis 1992 du smolt au madeleineau étant de $0,42 \% \pm 0,12 \%$ (tableau XV), on devrait s'attendre à au moins 112 et à au plus 197 madeleineaux pour une montaison attendue de 155 madeleineaux en 2010. Pour les grands saumons, la montaison de 282 madeleineaux en 2009 nous permet de prévoir une montaison d'au moins 503 et d'au plus 731 grands saumons, pour une prévision de 617 grands saumons en 2010 (figure 15).

Dans la rivière de la Trinité, les prévisions sont encore plus hasardeuses en raison de la grande variabilité de la survie observée en mer, particulièrement en ce qui concerne les madeleineaux. Ainsi, la survie moyenne depuis 1992 est de $0.82\%\pm0.33\%$; on devrait donc s'attendre à au moins 158 et à au plus 372 madeleineaux pour une montaison attendue de 265 madeleineaux en 2010 (tableau XV). Pour les grands saumons, la montaison de 229 madeleineaux en 2009 nous permet de prévoir une montaison d'au moins 146 et d'au plus 282 grands saumons, pour un total attendu de 214 grands saumons en 2010 (figure 16).

Si ces prévisions s'avèrent justes, les retours de saumons en 2010 dans les deux rivières seront faibles, plus particulièrement dans la rivière Saint-Jean. Le seuil de conservation devrait néanmoins être atteint dans cette rivière, alors que dans la Trinité, malgré la remise à l'eau obligatoire des grands saumons, le seuil ne sera possiblement pas atteint.

6 PROJETS SPÉCIAUX

6.1 Projet sur l'anguille de la rivière Saint-Jean

On sait maintenant que l'anguille est un poisson que l'on trouve en abondance dans le bassin versant de la rivière Saint-Jean. Depuis 2002, plusieurs travaux de recherche ont été effectués dans ce système afin de quantifier l'abondance de l'anguille dans la rivière, les lacs et le barachois ainsi que pour en étudier les déplacements et les migrations (Caron *et al.*, 2009). Un grand nombre d'entre elles effectuent des déplacements annuels pour se rendre à l'estuaire pendant l'été, dans ce qui semble être une excellente zone d'alimentation, et reviennent en eau douce pour la période hivernale.

6.1.1 Dévalaison d'anguilles printanières en 2009 estimée à 13 481 anguilles

Depuis 2003 dans la rivière Saint-Jean, l'estimation annuelle du nombre d'anguilles en dévalaison printanière s'effectue par la méthode de capture-recapture durant la même période et dans les mêmes engins de pêche que la dévalaison des smolts. La presque totalité des anguilles est capturée dans la zone de recapture, dans les trappes rotatives. Dans ces trappes, on effectue le comptage des anguilles (C) et l'observation du nombre d'individus recapturés (R). Les anguilles non marquées sont transportées, marquées (M) et relâchées dans la zone de capture avec celles capturées dans cette zone. Pour le marquage, les anguilles sont anesthésiées, une microétiquette portant un code individuel est insérée à la base de leur nageoire dorsale et le bout de leur nageoire caudale est coupé pour permettre de mieux les repérer.

Les estimations obtenues ont varié de 13 481 anguilles en 2009 à 40 921 anguilles en 2003. En 2009, 783 anguilles ont été capturées (C), 704 ont été marquées (M) et 40 ont été recapturées (R), soldant l'estimation à la plus faible enregistrée depuis le début de l'étude (tableau XVI, figure 17).

Durant la période d'échantillonnage, la taille des anguilles capturées dans les trappes rotatives a varié de 153 à 626 mm, les modes se situant à 240 et 260 mm, ce qui est semblable aux années antérieures (figure 18).

6.1.2 Suivi des populations d'anguilles du bassin versant de la rivière Saint-Jean

L'expertise et les connaissances déjà acquises sur l'anguille de la rivière Saint-Jean font de celle-ci une rivière témoin de choix pour un suivi à long terme de cette espèce dans un milieu non perturbé par l'homme. Depuis 2008, des pêches expérimentales standardisées à des stations précises ont été effectuées afin de pouvoir comparer les résultats avec des pêches identiques faites dans le lac Sirois en 2004 et dans le barachois en 2005 et 2008.

En 2009, un nouveau projet visant le suivi du recrutement d'anguilles a débuté. Pour ce faire, une trappe modifiée a été installée du 21 mai au 31 juillet dans l'estuaire tout près de l'embouchure afin de capturer des civelles et d'étudier leur condition ainsi que les facteurs environnementaux favorisant leur arrivée sur les côtes. Au total, 229 civelles ont été capturées. Les résultats des pêches seront présentés ultérieurement.

6.2 Dévalaison, montaison et captures d'ombles de fontaine et d'ombles chevaliers anadromes dans la rivière de la Trinité

Même si nos travaux concernent particulièrement le saumon, nous évaluons la dévalaison de l'omble de fontaine et de l'omble chevalier anadrome depuis quelques années dans la rivière de la Trinité. La méthodologie utilisée est la même que pour les smolts. Cependant, en 2009, aucune évaluation d'abondance n'a été faite pour la dévalaison des ombles chevaliers vu le faible nombre de captures.

6.2.1 Une période de dévalaison normale pour l'omble de fontaine

La dévalaison de l'omble de fontaine a été à son maximum du 24 mai, premier jour de récolte de données, au 19 juin, et on a compté quotidiennement quelques captures jusqu'au

28 juin (tableau XVII). Cette période de dévalaison correspond à ce que nous avons observé au cours des dernières années. Par contre, il est évident que le début de la dévalaison de l'omble de fontaine n'est pas comptabilisé vu le nombre élevé de captures dès la première journée. Leur migration est nettement plus hâtive que celle du saumon et précède, par conséquent, l'installation des trappes.

6.2.2 Estimation de la dévalaison : 10 109 ombles de fontaine

En 2009, 483 ombles de fontaine ont été marqués (M) et 486 ont été capturés (C), dont 33 étaient des recaptures (R). De plus, 216 ombles de fontaine ont été capturés, mais non marqués, du 24 au 26 mai. Nous avons donc tenu compte de ces captures dans l'évaluation de la dévalaison, pour atteindre ainsi 10 109 (7 267-14 502) ombles de fontaine anadromes (tableau XVII). L'estimation comporte un large intervalle de confiance et est minimale, puisque le début de la dévalaison a été manqué.

6.2.3 Caractéristiques des ombles en dévalaison

La longueur moyenne journalière des ombles de fontaine tend habituellement à diminuer légèrement au cours de la saison, ce qui n'a pas été le cas pendant l'année à l'étude (figure 19). Pour l'omble chevalier, nous croyons que tous les poissons capturés sont en migration. Nous avons échantillonné au total 9 femelles et 11 mâles qui ont été envoyés à l'Université de Waterloo pour l'analyse des isotopes stables (tableau XVIII). Leur poids et leur longueur sont légèrement supérieurs à ceux des individus échantillonnés par les années passées; par contre, le nombre de femelles a atteint sa plus faible proportion depuis 1998, soit 45 %. La figure 20 présente la fréquence, en pourcentage, des différentes longueurs de ces deux espèces d'ombles capturés en dévalaison.

6.2.4 Retour en rivière : 1 381 ombles de fontaine, 1 omble chevalier

On présume que la migration de ces deux espèces se fait durant une seule saison. La figure 21 présente les dates de montaison de l'omble de fontaine au cours de la saison 2009. Elle a débuté dans le mois de juin, mais l'essentiel de la montaison s'est fait en juillet et en

août. Le nombre d'ombles de fontaine est le plus faible depuis 2001 avec 1 381 individus en raison du fait que la barrière de comptage ne permet pas la capture des petits ombles et qu'elle n'a pas été en fonction la première semaine de juillet (figure 22). Un seul omble chevalier a été observé dans la passe migratoire en 2009, possiblement pour les mêmes raisons (figure 23).

6.2.5 L'exploitation de l'omble de fontaine par la pêche sportive : 485 ombles capturés en 2009

Des données de pêche sportive ont été récoltées depuis 1997 afin d'évaluer l'exploitation de l'omble de fontaine dans la rivière de la Trinité (tableau XIX). En 2009, 1 381 ombles ont été dénombrés dans la barrière de comptage, alors que 485 ombles ont été capturés à la pêche sportive. Le taux d'exploitation ne peut pas être calculé pour 2009, puisque le nombre d'ombles de fontaine en montaison est sous-estimé étant donné la sélectivité de la barrière, ce qui entraînerait une surévaluation de l'exploitation. De ce fait, l'année 2009 ainsi que les données précédant 2002 ne sont pas utilisées pour le calcul de la moyenne interannuelle. En effet, c'est en 2002 que des modifications ont été apportées au plancher de la cage de rétention de la passe migratoire et ont permis la capture de spécimens plus petits, entraînant une hausse du nombre de montaisons. La longueur totale moyenne des ombles de fontaine était de 30 cm en 2009, alors que la moyenne des années 2002 à 2008 est de 25 cm. Le poids moyen des captures sportives est de 419 g, ce qui est équivalent à la moyenne de 418 g.

6.3 Isotopes stables chez les smolts et les ombles chevaliers : poursuite des travaux

On trouve dans les tissus des êtres vivants une « signature isotopique » qui est de plus en plus utilisée pour la compréhension des populations animales. Certains éléments de base, comme le carbone, l'azote et le soufre, sont présents dans la nature non seulement sous leur forme élémentaire, mais aussi sous forme d'un isotope qui présente une masse atomique légèrement différente, ce qui permet de le reconnaître. Une plante à un endroit donné ou un animal se nourrissant uniquement de cette plante porteront donc une signature isotopique particulière à cet endroit. Si l'on connaît la signature isotopique de toutes les proies d'un

animal, on pourrait, en théorie, connaître l'importance relative de ses proies en analysant ce qu'il a accumulé dans sa chair.

Cet outil a été mis à contribution dans nos rivières témoins une première fois en 1998. Avec l'aide du Département de biologie de l'Université de Waterloo, des ombles chevaliers ont été analysés, et les résultats démontrent que certains avaient, sans l'ombre d'un doute, séjourné en mer quelque temps, puisque leur signature isotopique était différente de celle des ombles chevaliers résidents (Doucett *et al.*, 1999).

Le travail se poursuit sur l'omble chevalier, et on examine en plus la signature isotopique des smolts dans les deux rivières témoins de même que dans une rivière de Terre-Neuve-et-Labrador, la rivière Conne. Notre participation se fait principalement par la collecte de spécimens et de données de terrain ainsi que par une contribution à la rédaction d'un document scientifique ultérieur. Chaque année, 20 smolts sont échantillonnés dans les deux rivières et 20 ombles chevaliers dans la rivière de la Trinité. Le travail est coordonné par le professeur Mike Power. Il faudra poursuivre l'échantillonnage avant de pouvoir tirer des conclusions. Pour l'instant, on remarque que les signatures isotopiques des poissons des rivières Conne et de la Trinité sont assez voisines, alors que celle de la rivière Saint-Jean se distingue des autres.

6.4 Projet SALSEA

Le projet international SALSEA consiste en une vaste étude qui a pour but d'évaluer les facteurs qui affectent la survie en mer du saumon atlantique. En 2009, dans le cadre du volet nord-américain, une expédition de 22 jours de pêche au chalut et au filet maillant a été effectuée sur un bateau de la Garde côtière canadienne. Des techniciens et biologistes du Canada et des États-Unis ont participé à cette expédition, dont un technicien du Service de la faune aquatique du ministère des Ressources naturelles et de la Faune. Notre collaboration à partir des rivières témoins a consisté à marquer au moyen de microétiquettes tous les smolts capturés dans la rivière Saint-Jean, afin qu'ils puissent être identifiés s'ils sont capturés en mer par l'équipe du projet SALSEA (voir section 2.1).

De plus, dans le cadre d'un second volet du projet coordonné par Gérald Chaput de Pêches et Océans Canada, notre participation consistait à fournir 30 nageoires adipeuses et une dizaine d'écailles de madeleineaux, échantillonnés à la pêche sportive dans chacune des deux rivières, pour une étude sur les isotopes stables permettant d'évaluer les changements des niveaux trophiques selon le stade de vie du saumon.

7 CONCLUSION

Pour bien gérer l'exploitation d'une espèce, il faut bien comprendre la dynamique de sa population. Dans la situation actuelle où les stocks de saumons sont à leur plus bas niveau un peu partout dans le monde, une gestion prudente des stocks doit s'appuyer sur une bonne connaissance de la situation, et c'est là le rôle des rivières témoins.

Dans la rivière Saint-Jean, la montaison de 2010 suffira possiblement pour dépasser le seuil de conservation malgré la faible proportion de rédibermarins prévue. La montaison de madeleineaux devrait être très faible, et ce, étant donné la plus petite production de smolts rencontrée en 2009 depuis le début de l'étude. Malgré tout, la situation globale demeure relativement bonne, ce qui semble d'ailleurs être le cas pour l'ensemble de la zone salmonicole Q2 (péninsule de la Gaspésie).

La situation dans la rivière de la Trinité, comme dans l'ensemble de la zone salmonicole Q7 (Haute-Côte-Nord), est moins reluisante, mais tend à s'améliorer depuis quelques années. En effet, la survie des dernières cohortes de smolts a augmenté et se trouve nettement audessus de la moyenne de 1992-2008. Malgré tout, il semble qu'en 2010 on ne parviendra pas à dépasser le nombre de géniteurs requis et que les madeleineaux devraient être encore peu nombreux.

Il est audacieux de faire des prévisions de retours à plus grande échelle en s'appuyant uniquement sur deux rivières témoins. On remarque toutefois que ces deux rivières reflètent assez bien la situation générale de leur région respective et, si cela est encore le cas en 2009, on doit s'attendre à une faible montaison de saumons au sud et au nord du Saint-Laurent.

REMERCIEMENTS

Nous tenons à remercier les dirigeants et le personnel des zecs des rivières du Grand Gaspé et ceux de la rivière de la Trinité qui nous ont appuyés dans nos travaux. Notre présence sur ces rivières et notre insistance à vouloir recueillir les meilleurs renseignements possible comportent à l'occasion certaines contraintes, mais nous croyons que ces efforts valent la peine, puisqu'ils nous permettent de mieux comprendre ce qui se passe dans le grand cycle de la vie du saumon.

Les pêcheurs des rivières ont grandement coopéré à la prise d'information en permettant au personnel d'effectuer différentes mesures sur les spécimens qu'ils avaient capturés.

Nous remercions tout le personnel de l'équipe technique, qui a manifesté beaucoup d'enthousiasme dans l'accomplissement de ses tâches.

GLOSSAIRE

Alevin Juvénile dans sa première année de vie qui n'a pas

encore développé les marques caractéristiques des tacons. Par extension, on attribue ce nom à tous les

juvéniles d'âge 0+.

Tacon ou juvénile Jeune saumon qui est toujours demeuré en rivière

depuis sa naissance. Lorsque l'on veut spécifier l'âge, on utilise tacon 0+, tacon 1+, tacon 2+, etc., pour désigner des poissons à leur première, deuxième,

troisième, etc., année de vie.

Tacon précoce Poisson qui a participé à la fraie alors qu'il était au

stade tacon (habituellement un mâle).

Smolt ou saumoneau Saumon juvénile qui amorce sa première migration vers

la mer. Smolt désigne aussi d'autres salmonidés anadromes qui entreprennent leur première migration

en mer.

Smolt post-précoce Smolt qui a frayé comme tacon précoce.

Madeleineau Saumon qui revient en rivière pour frayer la première

fois, après avoir passé un seul hiver en mer.

Dibermarin Saumon qui revient en rivière pour frayer la première

fois, après avoir passé deux hivers consécutifs en mer.

Tribermarin Saumon qui revient en rivière pour frayer la première

fois, après avoir passé trois hivers consécutifs en mer.

Saumon à fraie antérieure Saumon qui a déjà frayé au cours des années

antérieures.

Rédibermarin ou grand

saumon

Saumon qui a passé plus d'un hiver en mer. Ce terme

englobe tous les grands saumons et exclut donc les

madeleineaux.

Reproducteur Saumon adulte revenu à la rivière et présent au moment

de la fraie.

Saumon noir Saumon adulte en dévalaison printanière.

Unité de production Unité de mesure pour quantifier l'habitat des juvéniles.

LISTE DES RÉFÉRENCES

- CARON, F. (1990). « Calculs relatifs à la détermination du nombre de reproducteurs requis », dans N. Samson et J.-P. Le Bel (éd.), *Compte rendu de l'atelier sur le nombre de reproducteurs requis dans les rivières à saumon*, Île-aux-Coudres, février 1988, ministère du Loisir, de la Chasse et de la Pêche, Direction de la gestion des espèces et des habitats, p. 213-218.
- CARON, F., P.-M. FONTAINE et S.-É. PICARD (1999). Seuil de conservation et cible de gestion pour les rivières à saumon (Salmo salar) du Québec, Québec, Société de la faune et des parcs du Québec, Direction de la faune et des habitats, 48 p.
- CARON, F., D. FOURNIER, V. CAUCHON et I. THIBAULT (2009). *Travaux de recherche sur l'anguille de la rivière Saint-Jean de 2001 à 2007*, Québec, Ministère des Ressources naturelles et de la Faune, Direction de l'expertise sur la faune et ses habitats, Service de la faune aquatique, 79 p.
- CARON, F., et J.-P. LE BEL (éd.) (1991). *Normes biologiques applicables dans le cadre du programme de développement économique du saumon*, Québec, Ministère du Loisir, de la Chasse et de la Pêche, Direction de la gestion des espèces et des habitats, Service de la faune aquatique, 58 p.
- CHAPMAN, D.G. (1951). "Some properties of the hypergeometric distribution with applications to zoological sample censuses", *University of California publications in statistics*, vol. 1, p. 131-160.
- DOUCETT, R.R., M. POWER, G. POWER, F. CARON and J.D. REIST (1999). "Evidence for anadromy in a southern relict population of arctic charr from North America", *Journal of Fish Biology*, vol. 55, p. 84-93.
- FOURNIER, D., et V. CAUCHON (2009). *Travaux de recherche sur le saumon des rivières Saint-Jean et de la Trinité en 2008*, Québec, Ministère des Ressources naturelles et de la Faune, Direction de l'expertise sur la faune et ses habitats, Service de la faune aquatique, 77 p.
- THOMPSON, D'A.W. (1942). On growth and form, Cambridge, Cambridge University Press.
- RICKER, W.E. (1980. « Calcul et interprétation des statistiques biologiques des populations de poissons", *Bulletin of Fisheries Research Board of Canada*, n° 191F, 409 p.

TABLEAUX

Tableau I. Captures de smolts en dévalaison printanière dans la rivière Saint-Jean en 2009

Date		Zone de	e capture			Zo	ne de recap	oture	
	Cap	turés	Marqu	iés (M)	Captu	rés (C)	Recapti	urés (R)	Marqués
	Nombre	Cumul.	Nombre	Cumul.	Nombre	Cumul.	Nombre	Cumul.	%
05-17			2	2	3		0		0,0
05-18			13	15	13	13	0	0	0,0
05-19			50	65	55	68	1	1	1,8
05-20	459	459	459	524	264	332	0	1	0,0
05-21	402	861	399	923	200	532	8	9	4,0
05-22	670	1 531	670	1 593	343	875	73	82	21,3
05-23	404	1 935	404	1 997	355	1 230	70	152	19,7
05-24	320	2 255	320	2 317	399	1 629	38	190	9,5
05-25	308	2 563	308	2 625	448	2 077	115	305	25,7
05-26	227	2 790	227	2 852	287	2 364	38	343	13,2
05-27	265	3 055	265	3 117	257	2 621	58	401	22,6
05-28	267	3 322	266	3 383	162	2 783	45	446	27,8
05-29	892	4 2 1 4	890	4 273	322	3 105	60	506	18,6
05-30	664	4 878	662	4 935	328	3 433	135	641	41,2
05-31	608	5 486	607	5 542	302	3 735	117	758	38,7
06-01	1 218	6 704	1 218	6 760	278	4 013	94	852	31,7
06-02	782	7 486	781	7 541	103	4 116	54	906	31,7
06-03	1 062	8 548	1 062	8 603	348	4 464	158	1 064	31,7
06-04	618	9 166	617	9 220	332	4 796	221	1 285	66,6
06-05	355	9 521	355	9 575	159	4 955	90	1 375	56,6
06-06	357	9 878	356	9 931	62	5 017	35	1 410	56,5
06-07	139	10 017	138	10 069	64	5 081	43	1 453	67,2
06-08	179	10 196	179	10 248	31	5 112	12	1 465	35,0
06-09	168	10 364	168	10 416	27	5 139	13	1 478	48,1
06-10	127	10 491	127	10 543	99	5 238	46	1 524	46,5
06-11	150	10 641	150	10 693	65	5 303	40	1 564	61,5
06-12	117	10 758	117	10 810	54	5 357	30	1 594	55,6
06-13	128	10 886	128	10 938	86	5 443	56	1 650	65,1
06-14	82	10 968	81	11 019	83	5 526	41	1 691	49,4
06-15	60	11 028	60	11 079	46	5 572	12	1 703	26,1
06-16	2	11 030	2	11 081	69	5 641	16	1 719	23,2
06-17	122	11 152	122	11 203	51	5 692	0	1 719	0,0
06-18	142	11 294	141	11 344	65	5 757	36	1 755	55,4
06-19	57	11 351	56	11 400	69	5 826	31	1 786	44,9
06-20	29	11 380	29	11 429	39	5 865	11	1 797	28,2
06-21	43	11 423	43	11 472	17	5 882	8	1 805	47,1
06-22	10		10		14	5 896	9	1 814	64,3
Total		11 423		11 472		5 896		1 814	30,8

<u>Évaluation :</u>	M	C	R	N min.	N	N max.
	11 472	5 896	1 814	35 601 3	7 276	39 031
Mortalité et échantillo	ns, zone de c	apture :	21	Smolts produits	Smo	lts partis en mer
Mortalité et échantillo	ns, zone de re	ecapture :	190	37 297		37 086

Remarques : Les données en italique ne font pas partie de l'évaluation, car les smolts prennent en moyenne une journée pour atteindre la zone de recapture.

Du 17 au 19 mai, les smolts marqués sont ceux capturés dans la zone de recapture qui ont été transportés et relâchés dans la zone de capture.

Tableau II. Captures de smolts en dévalaison printanière dans la rivière de la Trinité en 2009

Date		Zone de	capture			Zo	ne de reca	pture	
	Capt	turés	Marqu	és (M)	Captu	rés (C)	Recapti	urés (R)	Marqués
	Nombre	Cumul.	Nombre	Cumul.	Nombre	Cumul.	Nombre	Cumul.	%
05-24			1	1	1		0		
05-25			0	1	0	0	0	0	
05-26			3	4	3	3	0	0	0,0
05-27			6	10	6	9	0	0	0,0
05-28	8	8	8	18	1	10	0	0	0,0
05-29	42	50	41	59	19	29	0	0	0,0
05-30	21	71	21	80	6	35	0	0	0,0
05-31	51	122	51	131	21	56	1	1	4,8
06-01	108	230	105	236	54	110	1	2	1,9
06-02	43	273	41	277	76	186	6	8	7,9
06-03	75	348	75	352	22	208	3	11	13,6
06-04	28	376	28	380	26	234	0	11	0,0
06-05	87	463	87	467	65	299	3	14	4,6
06-06	107	570	107	574	63	362	3	17	4,8
06-07	263	833	262	836	70	432	5	22	7,1
06-08	146	979	146	982	100	532	12	34	12,0
06-09	295	1 274	295	1 277	184	716	16	50	8,7
06-10	156	1 430	155	1 432	147	863	20	70	13,6
06-11	62	1 492	62	1 494	36	899	10	80	27,8
06-12	58	1 550	57	1 551	41	940	8	88	19,5
06-13	90	1 640	88	1 639	88	1 028	12	100	13,6
06-14	393	2 033	391	2 030	325	1 353	32	132	9,8
06-15	533	2 566	532	2 562	400	1 753	45	177	11,3
06-16	496	3 062	493	3 055	602	2 355	83	260	13,8
06-17	308	3 370	308	3 363	628	2 983	78	338	12,4
06-18	209	3 579	208	3 571	448	3 431	63	401	14,1
06-19	102	3 681	102	3 673	389	3 820	49	450	12,6
06-20	83	3 764	83	3 756	235	4 055	26	476	11,1
06-21	41	3 805	41	3 797	173	4 228	20	496	11,6
06-22	13	3 818	12	3 809	62	4 290	8	504	12,9
06-23	7	3 825	7	3 816	68	4 358	10	514	14,7
06-24	8	3 833	8	3 824	37	4 395	1	515	2,7
06-25	6	3 839	6	3 830	30	4 425	5	520	16,7
06-26	3	3 842	3	3 833	11	4 436	1	521	9,1
06-27	9	3 851	9	3 842	9	4 445	2	523	22,2
06-28	6	3 857	0	3 842	1	4 446	0	523	0,0
06-29	4	3 03 1	ŏ	3 0 12	5	4 451	Ö	523	0,0
Total		3 857		3 842		4 451		523	11,8
			<i>C</i>				TA T		11,0
Évaluation :		M 3 842	C 4 451	R 523		N min. 29 974	N 32 651	N max. 35 566	
	, ,				=-				
Mortalité et d			-	29	Sm	nolts produ	uts Smol	ts partis er	n mer
Mortalité et	echantillon	s, zone de i	recapture :	219		32 680		32 432	

Remarques : Les données en italique ne font pas partie de l'évaluation, car les smolts prennent en moyenne 1,5 jour pour atteindre la zone de recapture.

Du 24 au 27 mai, les smolts marqués sont ceux capturés dans la zone de recapture qui ont été transportés et relâchés dans la zone de capture.

Tableau III. Caractéristiques des smolts dans la rivière Saint-Jean en 2009

		2 ans			3 ans			4 ans		5 an	ıs		Tous	
	Mâles	Femelles	Tous	Mâles	Femelles	Tous	Mâles	Femelles	Tous	Femelles	Tous	Mâles	Femelles	Tous
Nombre	7	5	12	53	73	126	16	45	61	1	1	76	124	200
Proportion	58 %	42 %	6 %	42 %	58 %	63 %	26 %	74 %	31 %	100 %	1 %	38 %	62 %	100 %
Âge à la sm	oltificati	on										3,12	3,34	3,26
Poids (g)														
Moyenne	10,2	8,7	9,6	11,9	11,7	11,8	17,5	16,6	16,8	25,6	25,6	12,9	13,5	13,2
Minimum	7,9	6,8	6,8	6,7	7,3	6,7	11,1	10,7	10,7	25,6	25,6	6,7	6,8	6,7
Maximum	11,5	11,3	11,5	19,6	20,0	20,0	25,7	27,9	27,9	25,6	25,6	25,7	27,9	27,9
Écart-type	1,4	1,8	1,7	2,8	3,1	3,0	3,8	3,9	3,8			3,8	4,3	4,1
Longueur to	otale (m	m)												
Moyenne	116	111	114	121	121	121	138	137	137	155	155	124	126	126
Minimum	109	105	105	102	101	101	121	118	118	155	155	102	101	101
Maximum	123	119	123	146	143	146	157	163	163	155	155	157	163	163
Écart-type	5,7	6,4	6,3	9,2	10,6	10,0	9,6	10,0	9,8			11,5	13,3	12,7
Longueur à	la fourc	che (mm)												
Moyenne	107	101	104	111	111	111	128	125	126	143	143	114	116	115
Minimum	100	95	95	94	93	93	111	109	109	143	143	94	93	93
Maximum	113	109	113	135	131	135	147	151	151	143	143	147	151	151
Écart-type	5,4	5,9	6,0	8,6	9,7	9,2	9,5	9,4	9,4			11,1	12,4	11,9
Facteur de	conditio	n de Fulton												
Moyenne	0,84	0,82	0,83	0,85	0,85	0,85	0,83	0,83	0,83	0,87	0,87	0,84	0,84	0,84
Minimum	0,79	0,79	0,79	0,75	0,71	0,71	0,76	0,72	0,72	0,87	0,87	0,75	0,71	0,71
Maximum	0,93	0,87	0,93	1,00	0,98	1,00	0,92	0,94	0,94	0,87	0,87	1,00	0,98	1,00
Écart-type	0,05	0,03	0,04	0,05	0,05	0,05	0,05	0,05	0,05			0,05	0,05	0,05

Tableau IV. Caractéristiques des smolts dans la rivière de la Trinité en 2009

		2 ans			3 ans			4 ans			Tous	
	Mâles	Femelles	Tous	Mâles	Femelles	Tous	Mâles	Femelles	Tous	Mâles	Femelles	Tous
Nombre	4	8	12	83	114	197	5	14	19	92	136	228
Proportion	33 %	67 %	5 %	42 %	58 %	86 %	26 %	74 %	8 %	40 %	60 %	100 %
Âge à la smol	tification									3,01	3,04	3,03
Poids (g)												
Moyenne	15,1	14,0	14,4	17,7	16,9	17,2	21,7	22,9	22,6	17,8	17,3	17,5
Minimum	11,4	11,5	11,4	9,5	9,6	9,5	16,0	15,3	15,3	9,5	9,6	9,5
Maximum	20,2	16,1	20,2	31,8	34,4	34,4	25,4	35,2	35,2	31,8	35,2	35,2
Écart-type	4,2	1,5	2,5	4,9	4,6	4,7	3,5	5,4	4,9	4,9	5,0	4,9
Longueur tot	ale (mm)											
Moyenne	127	122	124	133	131	132	142	144	144	133	132	133
Minimum	116	113	113	111	111	111	127	130	127	111	111	111
Maximum	142	127	142	165	166	166	154	167	167	165	167	167
Écart-type	11,7	4,0	7,4	11,5	10,9	11,2	10,0	10,6	10,2	11,6	11,5	11,5
Longueur à l	a fourche	(mm)										
Moyenne	118	113	115	123	122	122	132	134	134	124	122	123
Minimum	107	105	105	103	104	103	120	121	120	103	104	103
Maximum	133	118	133	152	154	154	142	157	157	152	157	157
Écart-type	11,5	3,9	7,2	10,8	10,3	10,5	8,0	10,0	9,4	10,9	10,9	10,9
Facteur de co	ndition d	e Fulton										
Moyenne	0,91	0,97	0,95	0,92	0,92	0,92	0,94	0,93	0,93	0,92	0,92	0,92
Minimum	0,86	0,94	0,86	0,72	0,79	0,72	0,89	0,75	0,75	0,72	0,75	0,72
Maximum	0,97	1,03	1,03	1,05	1,11	1,11	1,00	1,06	1,06	1,05	1,11	1,11
Écart-type	0,05	0,03	0,05	0,05	0,06	0,05	0,04	0,07	0,06	0,05	0,06	0,06

Tableau V. Estimation de la dévalaison et caractéristiques des smolts de la rivière Saint-Jean de 1989-2009 et de la rivière de la Trinité de 1984-2009

			Rivièr	e Sain	t-Jean							F	Rivière	de la	Trinit	é				
Année	Estimation	Échantillon	LT	K	Âge	Âg	ge (ar	ı) en	%	Femelles	Estimation	Échantillon	LT	K	Âge	Âg	ge (ar	ı) en	%	Femelles
	dévalaison		\bar{x}	\bar{x}	\bar{x}	2	3	4	5	%	dévalaison		\bar{x}	\bar{x}	\bar{x}	2	3	4	5	%
	(n)	(n)	(mm)								(n)	(n)	(mm)							
1984											68 208	281			2,89	13	85	1	0	63
1985											66 069	86	131		2,90	17	76	7	0	53
1986											96 545	207	124		3,01	8	82	10	0	59
1987											77 617	221	129		3,10	5	79	16	0	55
1988											51 879	230	131	0,97	2,73	37	53	10	0	56
1989	92 665	269	126	0,91	3,56	1	43	54	1	66	80 057	313	132	0,97	2,79	28	66	6	0	56
1990	97 992	224	125	0,89	3,38	2	60	34	3	66	50 328	193	127	0,83	3,07	8	78	13	1	63
1991	113 927	177	125	0,88	3,66	2	35	57	6	61	40 863	163	132	0,92	3,08	8	76	16	0	61
1992	154 980	189	128	0,90	3,49	1	53	44	3	68	50 869	205	136	0,92	3,03	9	78	13	0	55
1993	142 972	208	129	0,86	3,61	1	37	61	0	65	86 226	265	138	0,94	3,03	6	85	8	1	68
1994	74 285	324	121	0,91	3,71	2	29	66	3	63	55 913	144	132	0,96	3,03	9	79	11	1	58
1995	60 227	228	124	0,90	3,71	2	30	64	5	61	71 899	220	134	0,95	3,01	15	69	16	0	55
1996	104 973	113	129	0,87	3,53	4	43	47	5	63	61 092	193	130	0,95	3,05	4	88	9	0	55
1997		238	122	0,92	3,37	5	56	37	3	56	31 892	213	133	0,94	3,09	7	77	16	0	60
1998	95 843	182	122	0,93	2,97	18	67	15	0	62	28 962	171	143	0,97	3,08	10	72	18	0	57
1999	114 255	224	128	0,90	3,37	4	57	37	2	67	56 557	137	131	0,94	2,87	21	71	8	0	59
2000	50 993	190	131	0,88	3,58	3	45	42	9	64	39 744	110	133	0,94	2,88	23	66	11	0	56
2001	109 845	130	128	0,85	3,25	12	52	35	2	63	70 318	150	134	0,96	2,93	11	86	3	0	57
2002	71 839	164	124	0,86	3,16	12	62	25	1	72	44 264	127	135	0,89	2,96	10	83	6	0	70
2003	60 259	238	127	0,84	3,23	3	73	24	1	66	53 030	249	135	0,89	3,02	9	80	11	0	60
2004	54 821	229	124	0,84	3,21	7	66	28	0	65	27 051	246	132	0,88	3,06	7	80	13	0	59
2005	96 002	150	123	0,86	3,39	2	59	37	2	65	34 867	235	136	0,89	3,01	7	86	7	0	70
2006	102 939	200	126	0,86	3,45	3	54	39	5	67		185	130	0,88	2,88	21	71	8	0	61
2007	135 360	210	127	0,85	3,49	1	57	34	8	64	42 923	202	129	0,91	3,01	6	87	6	0	63
2008	45 978	198	124	0,82	3,33	3	62	34	1	62	35 036	219	128	0,87	3,00	10	82	8	0	61
2009	37 297	200	126	0,84	3,26	6	63	31	1	62	32 680	228	133	0,92	3,03	5	86	8	0	60
Moyenne	90 873		125	0,88	3,43	4	52	41	3	64	54 196		132	0,92	2,98	12	78	10	0	60

Notes : LT = Longueur totale

K = Facteur de condition de Fulton [100 000 * poids (g) / longueur à la fourche³ (mm)] (Thompson, 1942)

Tableau VI. Bilan de l'exploitation des saumons dans la rivière Saint-Jean de 1984-2009

Année		Pã	che spor	tive				Retraits	Reto	urs à la 1	ivière	R	eproducti	on	Dépo	sition d'œufs
	Mad.	Réd.	Total	Jours- pêche	Succès	Graciés	Succès ajusté	divers	Mad.	Réd.	Total	Saun Mad.	nons dispo Réd.	nibles Total	Œufs déposés (million)	Seuil de conservation (1,88 million d'œufs)
1984	25	345	370	819	0,45		0,45	52	113	1 116	1 229	88	719	807	3,42	182 %
1985	19	322	341	925	0,37		0,37	0	61	795	856	42	473	515	2,25	120 %
1986	70	240	310	854	0,36		0,36	20	155	819	974	85	559	644	2,66	142 %
1987	114	267	381	1 186	0,32		0,32	11	563	1 069	1 632	449	791	1 240	3,78	201 %
1988	150	587	737	1 419	0,52		0,52	27	436	1 937	2 3 7 3	280	1 329	1 609	6,33	337 %
1989	107	504	611	2 135	0,29		0,29	24	262	1 375	1 637	139	863	1 002	4,11	219 %
1990	220	254	474	1 717	0,28		0,28	9	512	772	1 284	291	510	801	2,44	130 %
1991	143	507	650	1 504	0,43		0,43	0	437	1 487	1 924	294	980	1 274	4,67	249 %
1992	303	623	926	2 053	0,45		0,45	3	559	1 478	2 037	255	853	1 108	4,38	233 %
1993	320	508	828	1 763	0,47		0,47	6	619	1 102	1 721	295	592	887	3,05	162 %
1994	256	578	834	2 710	0,31		0,31	9	494	1 258	1 752	232	677	909	3,48	185 %
1995	80	420	500	1 998	0,25		0,25	27	245	1 138	1 383	163	693	856	3,56	189 %
1996	152	364	516	1 494	0,35		0,35	20	341	798	1 139	185	418	603	2,15	114 %
1997	129	204	333	1 394	0,24	122	0,33	14	304	598	902	171	384	555	1,98	105 %
1998	171	0	171	1 245	0,14	291	0,37	1	483	431	914	312	430	742	2,22	118 %
1999	92	0	92	1 229	0,07	279	0,30	1	324	736	1 060	232	735	967	3,78	201 %
2000	87	3	90	1 298	0,07	320	0,32	5	370	421	791	283	413	696	2,13	113 %
2001	60	0	60	1 178	0,05	480	0,46	5	268	880	1 148	208	875	1 083	4,49	239 %
2002	168	0	168	1 197	0,14	393	0,47	3	520	686	1 206	352	683	1 035	3,52	187 %
2003	85	0	85	1 294	0,07	599	0,53	4	394	1 013	1 407	307	1 011	1 318	5,19	276 %
2004	106	0	106	1 370	0,08	462	0,41	1	384	677	1 061	277	677	954	3,48	185 %
2005	72	0	72	1 690	0,04	551	0,37	2	366	908	1 274	294	906	1 200	4,65	248 %
2006	104	0	104	1 588	0,07	439	0,34	2	346	758	1 104	242	756	998	3,89	207 %
2007	78	40	118	1 717	0,07	327	0,26	0	275	647	922	197	607	804	3,12	166 %
2008	240	15	255	1 700	0,15	410	0,39	2	599	605	1 204	359	588	947	3,03	161 %
2009	96	3	99	1 695	0,06	409	0,30	109	282	722	1 004	182	614	796	3,16	168 %
Moyenne																
1984-2008	134	231	365	1 499	0,24	389	0,37	10	377	940	1 317	241	701	942	3,51	187%
2004-2008	120	11	131	1 613	0,08	438	0,35	1	394	719	1 113	274	707	981	3,63	193%
Variation																
2009 vs 2008	- 60 %		- 61 %		- 61 %		- 23 %		- 53 %	19 %	- 17 %	- 49 %	4 %	- 16 %	4 %	
2009 vs 1984-200			- 73 %		- 76 %		- 19 %				- 24 %	- 25 %	- 12 %	- 16 %	- 10 %	
2009 vs 2004-200	8 - 20 %		- 24 %	5 %	- 28 %	- 7 %	- 15 %		- 28 %	0 %	- 10 %	- 34 %	- 13 %	- 19 %	- 13 %	

Ensemencements: 1984: S2 $16 \ 000 \ 1987: S2$ $4 \ 188$ 1989: T2 $5 \ 487$ 1990: S1 $7 \ 967$ 1991: T1 $6 \ 289$ 1995: cufs $120 \ 092$ 1996: cufs $125 \ 972$ $1998: AL 47 \ 000$ 1986: S2 $18 \ 741 \ 1987: S3$ $60 \ 1989: S2$ $36 \ 377$ 1990: S2 $6 \ 395$ 1992: S1 $15 \ 020$ 1996: AL $84 \ 691$ 1997: AL $68 \ 765$

Remarques: En 1996, 3 saumons noirs inclus dans les captures sportives. De 1998 à 2006, pêche au madeleineau seulement.

En 1999, aucun dénombrement de reproducteurs effectué en fin de saison. L'estimation de la montaison totale est basée sur les proportions moyennes (1994-1998) de montaison de madeleineaux et de grands saumons après la mi-saison.

En 2004, 2 madeleineaux provenant d'ensemencements (selon les écailles) sont inclus dans la pêche sportive, les retours à la rivière et les saumons disponibles à la reproduction.

Retraits divers : Inclut les retraits piscicoles et la mortalité.

Tableau VII. Bilan de l'exploitation des saumons dans la rivière de la Trinité de 1984-2009

Année	Pêche	comm	erciale			Pêche	sportive			Retraits divers	Retou	ırs à la ı	rivière	Retours totaux	Re	product	ion	Dép	osition d'œufs
							Jours-	Succès	Graciés						Saumo	ons disp	onibles	Œufs déposé	s Seuil de conservation
	Mad.	Réd.	Total	Mad.	Réd.	Total	pêche				Mad.	Réd.	Total		Mad.	Réd.	Total	(million)	(1,63 million d'œufs)
1984	34	555	589	415	132	547	2 474	0,22		1	1 771	468	2 239	2 828	1 355	336	1 691	2,19	134 %
1985	40	607	647	162	260	422	2 3 3 1	0,18		9	1 053	639	1 692	2 339	889	372	1 261	2,25	138 %
1986	14	606	620	510	227	737	2 284	0,32		3	1 589	621	2 2 1 0	2 830	1 076	394	1 470	2,43	149 %
1987	48	586	634	526	133	659	2 289	0,29		4	1 304	558	1 862	2 496	774	425	1 199	2,51	154 %
1988	57	522	579	596	94	690	2 680	0,26		6	1 639	813	2 452	3 031	1 037	719	1 756	4,17	256 %
1989	53	613	666	506	120	626	2 832	0,22		0	1 839	466	2 3 0 5	2 971	1 333	346	1 679	2,24	137 %
1990	144	524	668	668	164	832	3 110	0,27		2	1 905	530	2 435	3 103	1 235	366	1 601	2,32	142 %
1991	15	1 191	1 206	348	125	473	2 405	0,20		3	1 334	516	1 850	3 056	984	390	1 374	2,38	146 %
1992	56	638	694	222	151	373	2 693	0,14		3	577	612	1 189	1 883	354	459	813	3,26	200 %
1993		Fermée	;	172	57	229	2 676	0,09		1	410	271	681	681	238	213	451	1,55	95 %
1994		Fermée	;	184	34	218	2 274	0,10		0	579	309	888	888	395	275	670	2,05	126 %
1995		Fermée		104	117	221	2 125	0,10		2	348	671	1 019	1 019	244	552	796	3,82	235 %
1996		Fermée	;	182	66	248	2 445	0,10		2	661	434	1 095	1 095	477	368	845	2,71	167 %
1997		Fermée	;	156	61	217	2 397	0,09		2	394	558	952	952	237	496	733	3,45	211 %
1998		Fermée	;	112	80	192	2 642	0,07		2	524	385	909	909	410	305	715	2,26	138 %
1999		Fermée	;	66	47	113	1 675	0,07		3	396	381	777	777	327	334	661	2,41	148 %
2000		Fermée	;	37	16	53	1 234	0,05		1	250	251	501	501	213	234	447	1,68	103 %
2001		Fermée		24	36	60	901	0,07	3	0	100	187	287	287	76	151	227	1,05	64 %
2002		Fermée	;	71	0	71	726	0,10	23	0	404	108	512	512	333	108	441	0,90	55 %
2003		Fermée		68	18	86	834	0,10	13	0	385	218	603	603	317	200	517	1,51	92 %
2004		Fermée		54	0	54	862	0,06	25	0	334	230	564	564	280	230	510	1,69	104 %
2005		Fermée		51	0	51	644	0,08	10	6	277	149	426	426	222	147	369	1,10	68 %
2006		Fermée		120	0	120	735	0,16	18	2	515	357	872	872	395	355	750	2,58	159 %
2007		Fermée	;	123	0	123	931	0,13	32	0	601	249	850	850	478	249	727	1,92	118 %
2008		Fermée		112	0	112	788	0,14	42	3	628	325	953	953	516	322	838	2,43	149 %
2009		Fermée	2	23	0	23	627	0,04	20	2	229	216	445	445	206	214	420	1,54	95 %
Moyenne	e																		
1984-200	8			224	78	301	1 879	0,16	21	2	793	412	1 205	1 205	568	334	902	2,27	139 %
2004-200	8			92	0	92	792	0,12	25	2	471	262	733	733	378	261	639	1,94	119 %
Variation																			
2009 vs 2	2008			- 79 %		- 79 %	- 20 %	- 74 %	- 52 %		- 64 %	- 34 %	- 53 %	- 53 %	- 60 %	- 34 %	- 50 %	- 36 %	
2009 vs 1	984-20	800		- 90 %		- 92 %	- 67 %	- 77 %	- 4 %		- 71 %	- 48 %	- 63 %	- 63 %	- 64 %	- 36 %	- 53 %	- 32 %	
2009 vs 2				- 75 %		- 75 %								- 39 %				- 21 %	

Remarques : Retraits divers : Inclut les retraits piscicoles et la mortalité.

: La montaison a été estimée en ajoutant le nombre estimé de saumons qui ont monté pendant la semaine du 1^{er} au 7 juillet en considérant la proportion moyenne que représente cette période dans l'ensemble des montaisons des années 1992 à 2008.

Tableau VIII. Montaison totale des saumons par catégorie de groupe d'âge en mer dans la rivière Saint-Jean de 1984-2009

Année	Madele	eineaux	Rédiber	marins				Répartition	n des réc	dibermarins	}		
					Di	bermar	ins	Tr	ibermar	ins	Frai	e antéri	eure
	n	%	n	%	n échant.	%	n estimé	n échant.	%	n estimé	n échant.	%	n estimé
1984	113	9	1 116	91	283	89	996	20	6	70	14	4	49
1985	61	7	795	93	263	92	734	16	6	45	6	2	17
1986	155	16	819	84	187	87	716	7	3	27	20	9	77
1987	563	34	1 069	66	208	91	971	1	0	5	20	9	93
1988	436	18	1 937	82	432	93	1 792	3	1	12	32	7	133
1989	262	16	1 375	84	448	94	1 286	11	2	32	20	4	57
1990	512	40	772	60	211	86	665	4	2	13	30	12	95
1991	437	23	1 487	77	465	95	1 405	2	0	6	25	5	76
1992	559	27	1 478	73	555	93	1 374	13	2	32	29	5	72
1993	619	36	1 102	64	466	93	1 027	5	1	11	29	6	64
1994	494	28	1 258	72	516	90	1 135	12	2	26	44	8	97
1995	245	18	1 138	82	403	96	1 097	5	1	14	10	2	27
1996	341	30	798	70	319	88	699	18	5	39	27	7	59
1997	304	34	598	66	184	90	539	3	1	9	17	8	50
1998	483	53	431	47	0	91	393	0	2	11	0	6	27
1999	324	31	736	69	0	91	672	0	2	18	0	6	46
2000	370	47	421	53	38	91	384	2	2	10	4	6	26
2001	268	23	880	77	91	93	817	0	0	0	7	7	63
2002	520	43	686	57	20	87	597	0	0	0	3	13	89
2003	394	28	1 013	72	51	98	994	1	2	19	0	0	0
2004	384	36	677	64	24	92	625	1	4	26	1	4	26
2005	366	29	908	71	2	92	831	0	2	21	0	6	56
2006	346	31	758	69	33	79	596	1	2	18	8	19	144
2007	275	30	647	70	45	94	607	1	2	13	2	4	27
2008	599	50	605	50	12	86	519	1	7	43	1	7	43
2009	282	28	722	72	51	89	646	0	0	0	6	11	76
Moyenne													
1984-2009	374	29	932	71	204	91	851	5	2	20	14	7	61
2004-2008	394	35	719	65	23	88	635	1	3	24	2	8	59

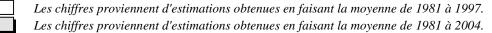


Tableau IX. Montaison totale des saumons par catégorie de groupe d'âge en mer dans la rivière de la Trinité de 1984-2009

Année	Madelei	ineaux ¹	Rédiber	marins ¹	!			Répartition	des réd	libermarins	1		
					Di	bermar			ibermaı			e antéri	eure
	n	%	n	%	n	%	n	n	%	n	n	%	n
					échant.		estimé	échant.		estimé	échant.		estimé
1984	1 805	64	1 023	36	594	87	888	0	0	0	90	13	135
1985	1 093	47	1 246	53	789	92	1 143	7	1	10	65	8	94
1986	1 603	57	1 227	43	752	92	1 129	4	0	6	62	8	93
1987	1 352	54	1 144	46	655	92	1 053	0	0	0	57	8	91
1988	1 696	56	1 335	44	567	93	1 243	0	0	0	42	7	92
1989	1 892	64	1 079	36	633	87	943	0	0	0	91	13	136
1990	2 049	66	1 054	34	571	84	882	0	0	0	112	16	172
1991	1 349	44	1 707	56	1 227	93	1 595	0	0	0	86	7	112
1992	633	34	1 250	66	732	93	1 165	5	1	9	48	6	77
1993	410	60	271	40	50	88	238	0	0	0	7	12	33
1994	579	65	309	35	27	82	253	0	0	0	6	18	56
1995	348	34	671	66	99	93	621	0	0	0	8	7	50
1996	661	60	434	40	55	87	379	0	0	0	8	13	55
1997	394	41	558	59	35	65	362	0	0	0	19	35	196
1998	524	58	385	42	67	86	331	0	0	0	11	14	54
1999	396	51	381	49	40	89	339	0	0	0	5	11	42
2000	250	50	251	50	12	86	215	0	0	0	2	14	36
2001	100	35	187	65	25	74	138	0	0	0	9	26	50
2002	404	79	108	21	10	45	49	0	0	0	12	55	59
2003	385	64	218	36	68	81	176	0	0	0	16	19	42
2004	334	59	230	41	29	88	202	0	0	0	4	12	28
2005	277	65	149	35	17	65	97	0	0	0	9	35	52
2006	515	59	357	41	22	51	183	0	0	0	21	49	174
2007	601	71	249	29	64	69	171	0	0	0	29	31	78
2008	628	66	325	34	42	66	213	0	0	0	22	34	112
2009	229	51	216	49	12	67	144	0	0	0	6	33	72
Moyenne					!								
1984-2009	789	56	629	44	277	86	544	1	0	1	33	13	84
2004-2008	471	64	262	36	35	66	173	0	0	0	17	34	89

¹ Incluant la pêche commerciale.

Tableau X. Caractéristiques des saumons échantillonnés dans la rivière Saint-Jean en 2009

-	Madele	ineaux	Ré	diberma	rins		Répai	tition de	s rédibe	ermarins	
	1						ibermari			aie antérie	ure
·	Mâles	Tous	Mâles	Femelles	Tous	Mâles	Femelles	Tous	Mâles	Femelles	Tous
Poids (kg)											
n	30	96	1		2	1		2			
Moyenne	1,56	1,59	4,20		4,23	4,20		4,23			
Minimum	1,00	1,00	4,20		4,20	4,20		4,20			
Maximum	2,10	2,10	4,20		4,26	4,20		4,26			
Écart-type	0,24	0,23			0,04			0,04			
Longueur à la	fourche	(cm)									
n	31	100	5	16	54	3	15	48	2	1	6
Moyenne	57,2	56,1	88,7	82,1	80,0	80,9	80,5	77,6	100,5	106,0	99,0
Minimum	48,0	48,0	76,0	74,0	70,0	76,0	74,0	70,0	100,0	106,0	85,0
Maximum	62,0	62,0	101,0	106,0	109,0	84,0	88,0	88,0	101,0	106,0	109,0
Écart-type	3,50	2,98	11,18	7,80	8,67	4,26	4,67	4,94	0,71		8,79
Facteur de cor	ndition de	e Fulton									
n	30	96	1		2	1		2			
Moyenne	0,83	0,90	0,75		0,81	0,75		0,81			
Minimum	0,62	0,54	0,75		0,75	0,75		0,75			
Maximum	1,12	1,15	0,75		0,86	0,75		0,86			
Écart-type	0,13	0,14			0,08			0,08			
Sexe											
n	31	31	5	17	22	3	16	19	2	1	3
_	100 %		23 %	77 %		16 %	84 %		67 %	33 %	
Âge à la											
smoltification				Nombre			Nombre			Nombre	
2 ans	3	4 %		3	5 %		3	6 %		0	0 %
3 ans	61	76 %		48	86 %		42	84 %		6	100 %
4 ans	16	20 %		5	9 %		5	10 %		0	0 %
5 ans	0	0 %		0	0 %		0	0 %		0	0 %
Total	80	100 %		56	100 %		50	100 %		6	100 %

Note : Le tableau présente les longueurs et les poids des poissons conservés et les longueurs seulement des poissons trouvés morts pour cause de maladie ou autre.

Tableau XI. Caractéristiques des saumons échantillonnés dans la rivière de la Trinité en 2009

	N	Tadeleinea	ux	Rédiber	marins	Répa	rtitio	n de	s rédiberm	arins	
<u>.</u>						Dibern	narins	5	Fraie an	térieu	ıre
	Mâles	Femelles	Tous	To	us	To	us		To	ous	
Poids (kg)											
n	11	1	14								
Moyenne	1,73	1,50	1,72								
Minimum	1,18	1,50	1,18								
Maximum	2,38	1,50	2,38								
Écart-type	0,39		0,37								
Longueur à l	a fourch	e (cm)									
n	18	1	40	1	7	12	2		:	5	
Moyenne	54,9	52,0	54,9	74	,2	73	,7		75	5,5	
Minimum	50,5	52,0	48,7	67	,0	68	,9		67	7,0	
Maximum	62,0	52,0	62,0	88	,0	80	,9		88	3,0	
Écart-type	3,27		3,14	5,8	31	3,8	34		9,	58	
Facteur de co	ondition (de Fulton									
n	11	1	14								
Moyenne	0,99	1,07	1,01								
Minimum	0,83	1,07	0,83								
Maximum	1,09	1,07	1,09								
Écart-type	0,07		0,07								
Sexe (n)											
n	18	1	19	()	()			0	
_	95 %	5 %									
Âge à la											
smoltification	n	Nombre		Nombre		Nombre			Nombre		
2 ans		2	6 %	0	0 %	0		%	0		%
3 ans		27	79 %	16	100 %	10	100		6	100	
4 ans		5	15 %	0	0 %	0	0	%	0	0	
5 ans		0	0 %	0	0 %	0		%	0		%
Total		34	100 %	16	100 %	10	100	%	6	100	%

Notes : Pour les madeleineaux, les données de poids et de longueur proviennent des poissons conservés ou trouvés morts.

Pour les grands saumons, les données proviennent de l'échantillonnage effectué dans la barrière de comptage par le personnel technique sur les poissons vivants ou des poissons trouvés morts.

Tableau XII. Caractéristiques des saumons échantillonnés dans la rivière Saint-Jean de 1983-2009

		Madelo	eineaux				Diber	marins				Tribei	marins				Fraie a	ntérieur	e	
	Échant.*	LF	Poids	Fem	elles	Échant.*	LF	Poids	Fen	nelles	Échant.*	LF	Poids	Fe	melles	Échant.*	LF	Poids	Fer	nelles
	n	$\frac{-}{x}$ (cm)	$_{x}^{-}$ (kg)	n	%	n	$\frac{-}{x}$ (cm)	$_{x}^{-}$ (kg)	n	%	n	$\frac{-}{x}$ (cm)	$_{x}^{-}$ (kg)	n	%	n	$\frac{-}{x}$ (cm)	$_{x}^{-}$ (kg)	n	%
1983	16			16	0,0	55			55	65,5	2			2	50,0	6			6	50,0
1984	2			2	0,0	15			15	60,0	0			0		1			1	100,0
1985	5			5	0,0	83			83	60,2	5			5	0,0	2			2	0,0
1986	13			13	7,7	38			38	50,0	1			1	100,0	5			5	60,0
1987	18			18	5,6	44			44	70,5	0			0		10			10	60,0
1988	113	54,9	1,60	91	1,1	431	74,7	4,25	194	61,9	2		7,70	0		39	79,0	5,16	17	23,5
1989	99	54,1	1,57	86	0,0	448	75,7	4,33	305	72,8	11	90,1	8,01	8	87,5	20	87,1	6,90	16	50,0
1990	206	54,8	1,71	180	0,6	211	75,6	4,47	152	66,4	4	90,5	7,84	3	100,0	30	89,8	7,50	16	56,3
1991	140	53,2	1,49	62	0,0	462	74,6	4,15	222	64,9	2	90,0	7,85	0		25	89,4	7,95	10	70,0
1992	284	54,4	1,65	128	0,0	555	76,2	4,55	262	74,0	13	91,6	8,20	9	88,9	29	90,0	7,90	16	62,5
1993	313	53,7	1,54	66	1,5	463	74,3	4,17	155	69,7	5	91,3	7,96	0		29	93,5	9,23	15	86,7
1994	248	53,6	1,60	106	4,7	515	75,8	4,53	204	71,6	12	91,3	8,23	4	100,0	44	90,0	8,11	17	47,1
1995	78	53,2	1,47	43	2,3	400	75,5	4,35	198	68,7	5	88,4	7,14	3	100,0	10	85,2	6,72	7	28,6
1996	152	55,2	1,70	60	1,7	319	75,8	4,44	118	66,9	18	91,5	8,16	6	83,3	27	94,0	9,18	15	60,0
1997	127	55,1	1,71	36	0,0	184	76,4	4,66	57	70,2	3	89,8	7,60	0		17	90,1	7,52	6	83,3
1998	48	54,2	1,66	48	0,0	0			0		0			0		0			0	
1999	38	55,9	1,76	38	0,0	0			0		0			0		0			0	
2000	88	56,0	1,70	27	0,0	38	75,7	4,53	8	75,0	1		5,40	0		4	78,0	7,27	4	50,0
2001	61	56,5	1,74	6	0,0	91	77,0		4	75,0	0			0		7	98,6		4	75,0
2002	167	56,7	1,78	50	2,0	19	79,0	4,40	1	0,0	0			0		3	96,3		0	
2003	92	56,5	1,77	32	0,0	51	79,7	5,85	1	100,0	1	83,0		0		0			0	
2004	105	57,1	1,76	61	4,9	23	79,2		0		1	96,0		0		1	94,0		0	
2005	69	56,5	1,73	33	3,0	2	74,5	4,00	2	50,0	0			0		0			0	
2006	115	56,0	1,71	28	3,6	27	81,8	5,20	1	100,0	1	94,0		0		6	95,5	9,20	1	0,0
2007	77	55,5	1,65	28	7,1	37	74,3	4,13	14	78,6	1	93,0	8,00	0		2	97,5	6,00	1	100,0
2008	240	56,4	1,72	93	0,0	12	77,1	4,58	5	80,0	1	89,0	7,50	1	100,0	1	84,0	6,00	1	0,0
2009	100	56,1	1,59	31	0,0	48	77,6	4,23	19	84,2	0		·	0		6	99,0		3	33,3
Moyenn	ie**	55,0	1,65		1,4		75,7			68,5		90,9			78,6		90,8			54,9

Valeurs utilisées pour le calcul de la déposition d'œufs

	Madelo	eineaux_	Rédibe	rmarins
	Poids	Femelles	Poids	Femelles
	$_{x}^{-}$ (kg)	%	\overline{x} (kg)	%
Avant 1992 🗆 🗀	1,59	1,35	4,59	67,48
Depuis 1992 □	1,63	1,43	4,73	70,50

LT : Longueur totale LF : Longueur à la fourche

^{*} Certaines caractéristiques ne sont pas connues pour tous les échantillons. Pour plus de précision sur l'année à l'étude, voir le tableau X.

^{**} Les moyennes sont présentées seulement pour les caractéristiques pour lesquelles le nombre de saumons échantillonnés est suffisant.

Tableau XIII. Caractéristiques des saumons échantillonnés dans la rivière de la Trinité de 1980-2009

		Madele	eineaux				Diber	marins				Triber	rmarins				Fraie a	ntérieur	e	
	Échant.*	LF	Poids	Fen	nelles	Échant.*	LF	Poids	Fen	nelles	Échant.*	LF	Poids	Fe	melles	Échant.*	LF	Poids	Fei	nelles
	n	$\frac{-}{x}$ (cm)	\bar{x} (kg)	n	%	n	$\frac{-}{x}$ (cm)	\bar{x} (kg)	n	%	n	$\frac{-}{x}$ (cm)	\bar{x} (kg)	n	%	n	$\frac{-}{x}$ (cm)	\bar{x} (kg)	n	%
1980	372		1,71	354	5,4	30		4,53	28	78,6	0			0		9		3,78	9	33,3
1981	317		1,51	296	4,1	21		4,00	20	100,0	0			0		3		4,20	3	33,3
1982	241		1,60	213	3,3	62		3,96	55	81,8	0			0		2		7,73	1	0,0
1983	123	51,7	1,57	116	2,6	73	72,1	3,94	65	89,2	0			0		4	87,0	6,92	4	50,0
1984	406	51,1	1,45	362	11,0	112	70,5	3,64	101	82,2	0			0		17	77,1	4,84	15	26,7
1985	150	49,8	1,33	109	1,8	232	71,0	3,78	168	95,2	2		6,83	2	100,0	19	72,6	4,86	12	25,0
1986	479	50,8	1,38	368	4,1	195	70,9	3,74	152	82,2	1	81,0	5,65	1	100,0	15	73,7	4,67	11	36,4
1987	500	51,9	1,47	333	8,4	116	72,4	4,01	83	86,7	0			0		10	74,3	4,60	6	0,0
1988	556	53,4	1,65	364	9,1	81	73,4	4,12	58	93,1	0			0		6	81,3	6,73	6	33,3
1989	482	54,4	1,67	292	7,9	97	72,5	3,91	64	89,1	0			0		14	75,6	5,22	7	42,9
1990	647	54,6	1,74	463	8,2	133	74,4	4,33	98	91,8	0			0		26	79,7	5,70	19	26,3
1991	344	54,6	1,66	183	7,7	114	73,2	3,94	68	97,1	0			0		8	75,8	4,69	5	40,0
1992	218	54,7	1,69	139	16,5	137	74,2	4,23	94	97,9	0			0		9	68,6	3,15	5	40,0
1993	164	55,9	1,80	125	7,2	50	73,2	4,01	37	97,3	0			0		7	85,3	6,22	7	100,0
1994	166	55,1	1,78	127	9,4	27	75,6	4,53	18	100,0	0			0		6	90,4	7,90	6	83,3
1995	100	55,3	1,79	69	7,2	97	74,4	4,26	69	100,0	0			0		8	75,1	4,96	2	0,0
1996	179	56,7	1,97	130	14,6	55	76,5	4,69	39	94,9	0			0		8	84,3	6,33	2	100,0
1997	151	57,0	2,05	112	9,8	35	75,5	4,50	31	96,8	0			0		19	88,0	7,32	16	81,3
1998	107	56,5	1,98	79	15,2	67	76,3	4,65	55	96,4	0			0		11	79,7	5,63	8	12,5
1999	64	59,9	2,20	39	12,8	40	77,3	4,79	32	96,9	0			0		5	98,9	10,71	3	66,7
2000	34	56,5	1,99	23	0,0	12	75,6	4,40	10	100,0	0			0		2	76,5	5,16	2	50,0
2001	23	59,8	2,07		15,8	25	77,5	4,60	25	96,0	0			0		9	80,3	5,48	8	87,5
2002	72	59,2	2,07		24,6	10	75,5		0		0			0		12	84,7		0	
2003	55	57,4	2,04	53	13,2	60	77,1	4,88	15	100,0	0			0		8	89,9	2,83	1	0,0
2004	53	57,2	2,08		30,0	29	76,7		0		0			0		4	94,0		0	
2005	44	56,0	1,87		26,2	17	75,4	4,28	1	100,0	0			0		9	91,8		0	
2006	121	56,9	2,09	107	,	22	77,1	4,55	1	100,0	0			0		21	83,1		0	
2007	123	54,2	1,85	111	11,7	64	75,6		0		0			0		29	85,0		0	
2008	113	56,8	1,95	105	4,8	40	73,8	5,35	1	100,0	0			0		22	83,1		0	
2009	40	54,9	1,72	19	5,3	12	73,7		0		0			0		5	75,5		0	
Moyenn	ie**	54,0	1,67		8,5		73,6			91,5		81,0			100,0		81,5			43,7

Valeurs utilisées pour le calcul de la déposition d'œufs

	Madeleineaux	Rédibermarins
	Poids Femelles	Poids Femelles
	$\frac{-}{x}$ (kg) %	$\frac{\overline{x}}{x}$ (kg) %
Avant 1992	1,60 7,23	4,10 85,68
Depuis 1992 □	1,88 11,48	4,65 93,82

LT : Longueur totale LF : Longueur à la fourche

^{*} Certaines caractéristiques ne sont pas connues pour tous les échantillons. Pour plus de précision sur l'année à l'étude, voir le tableau XI.

^{**} Les moyennes sont présentées seulement pour les caractéristiques pour lesquelles le nombre de saumons échantillonnés est suffisant.

Tableau XIV. Survie en rivière, de l'œuf au smolt, dans les rivières Saint-Jean et de la Trinité

				Riviè	re Saint-,	Jean									Riviè	re de la Tr	inité				
Année	Œufs	Nomb	e par gro	upe d'âg	e	Tau	x de surv	ie (%) pa	r groupe d	l'âge	Œufs		Nombre j	oar grou	pe d'â	ge	Tai	ux de surv	ie (%) pa	r groupe d'	âge
	déposés	2 3	4	5	Tous	2	3	4	5	Tous	déposés	2	3	4	5	Tous	2	3	4	5	Tous
1980											1 717 436	5 476	58 256	4 609	0	68 341		3,39	0,27	0,00	3,98
1981											1 416 661	8 981	49 936	9 328	0	68 245	0,63	3,52	0,66	0,00	4,82
1982											3 886 723	11 524	79 288	12 292	0	103 104	0,30	2,04	0,32	0,00	2,65
1983											2 364 651	7 929	61 110	4 962	256	74 257	0,34	2,58	0,21	0,01	3,14
1984											2 191 974	4 2 1 4	27 744	4 860	261	37 079	0,19	1,27	0,22	0,01	1,69
1985	2 251 024	1011 39 96	0 33 685	6 437	81 091		1,78	1,50	0,29	3,60	2 254 762	19 173	52 689	6 780	0	78 642	0,85	2,34	0,30	0,00	3,49
1986	2 662 146	1 033 59 05	8 65 009	4 100	129 200	0,04	2,22	2,44	0,15	4,85	2 425 953	22 252	39 376	6 518	0	68 146	0,92	1,62	0,27	0,00	2,81
1987	3 784 154	2 187 39 90	7 68 060	687	110 841	0,06	1,05	1,80	0,02	2,93	2 507 970	3 912	31 086	6 452	651	42 100	0,16	1,24	0,26	0,03	1,68
1988	6 333 209	2 575 82 00	0 87 295	2 522	174 392	0,04	1,29	1,38	0,04	2,75	4 166 199	3 259	39 703	6 508	388	49 858	0,08	0,95	0,16	0,01	1,20
1989	4 110 301	820 52 92	7 49 065	2 906	105 718	0,02	1,29	1,19	0,07	2,57	2 239 664	4 715	73 536	6 213	0	84 463	0,21	3,28	0,28	0,00	3,77
1990	2 439 925	2 062 21 55	2 38 302	5 574	67 490	0,08	0,88	1,57	0,23	2,77	2 319 842	5 531	44 264	11 765	0	61 561	0,24	1,91	0,51	0,00	2,65
1991	4 674 652	1 146 17 96	2 49 235	3 818	72 162	0,02	0,38	1,05	0,08	1,54	2 378 498	5 048	49 349	5 381	0	59 778	0,21	2,07	0,23	0,00	2,51
1992	4 380 684	1 057 45 51	9	0		0,02	1,04		0,00		3 259 413	10 785	53 495	5 091	0	69 371	0,33	1,64	0,16	0,00	2,13
1993	3 046 972	4 645	14 218	2 040		0,15		0,47	0,07		1 551 203	2 216	24 705	5 250	0	32 171	0,14	1,59	0,34	0,00	2,07
1994	3 478 492	4 863 64 24	6 42 336	4 831	116 276	0,14	1,85	1,22	0,14	3,34	2 048 734	2 096	20 832	4 541	0	27 470	0,10	1,02	0,22	0,00	1,34
1995	3 556 483	17 378 65 28	9 21 471	1 690	105 827	0,49	1,84	0,60	0,05	2,98	3 824 510	2 879	40 044	4 336	0	47 259	0,08	1,05	0,11	0,00	1,24
1996	2 150 090	4 591 23 08	1 38 023	876	66 571	0,21	1,07	1,77	0,04	3,10	2 714 526	11 972	26 376	2 344	0	40 691	0,44	0,97	0,09	0,00	1,50
1997	1 975 262	1 610 56 61	2 17 960	506	76 689	0,08	2,87	0,91	0,03	3,88	3 445 827	9 033	60 473	2 788	213	72 507	0,26	1,75	0,08	0,01	2,10
1998	2 218 708	13 519 44 68	0 14 179	0	72 378	0,61	2,01	0,64	0,00	3,26	2 257 500	7 501	36 945	5 750	0	50 196	0,33	1,64	0,25	0,00	2,22
1999	3 775 376	8 323 44 05	5 15 082	1 920	69 380	0,22	1,17	0,40	0,05	1,84	2 408 173	4 531	42 168	3 519	148	50 367	0,19	1,75	0,15	0,01	2,09
2000	2 130 047	1 519 35 90	9 35 201	4 632	77 261	0,07	1,69	1,65	0,22	3,63	1 678 721	4 898	21 553	2 374	72	28 897	0,29	1,28	0,14	0,00	1,72
2001	4 490 633	3 830 56 96	1 40 146	10 958	111 895	0,09	1,27	0,89	0,24	2,49	1 051 051	1 979	29 971	3 355	212	35 518	0,19	2,85	0,32	0,02	3,38
2002	3 516 001	1 920 55 07	2 45 765	464	103 221	0,05	1,57	1,30	0,01	2,94	897 879	2 374		2 762	160		0,26		0,31	0,02	
2003	5 192 382	3 088 76 70	4 15 558	186	95 537	0,06	1,48	0,30	0,00	1,84	1 505 579	4 257	37 186	2 880	0	44 322	0,28	2,47	0,19	0,00	2,94
2004	3 481 041	1 934 28 56	2 11 376	2 739	44 610	0,06	0,82	0,33	0,08	1,28	1 687 073	2 762	28 637	2 723	101	34 224	0,16	1,70	0,16	0,01	2,03
2005	4 654 184	1 393 23 49	7			0,03	0,50				1 100 834	3 360	28 237	_			0,31	2,57			
2006	3 885 956	2 238				0,06					2 584 465	1 720					0,07				
2007	3 120 226										1 918 151										
2008	3 032 083										2 426 935										
2009	3 157 278										1 541 118										
Moyenne	3 499 892					0,11 %	1,31 %	1,08 %	0,08 %	2,70 %	2 259 067						0,28 %	1,81 %	0,23 %	0,004 %	2,32 %

Les chiffres proviennent de moyennes des cinq années précédentes ou suivantes et sont utilisés provisoirement pour compléter les calculs.

Cette estimation provient de la proportion de smolts observés en 1997 multipliée par la moyenne de la production de smolts de 1989 à 1999.

Les chiffres proviennent d'estimations obtenues en faisant la moyenne des années antérieures.

Les chiffres ne sont pas des observations mais des estimations de survie qui sont proportionnelles aux observations faites au cours des autres années, soit la moyenne de 1981 à 1994.

Tableau XV. Survie en mer, du smolt jusqu'à l'adulte, dans les rivières Saint-Jean et de la Trinité

				Rivière S	aint-Jean						Rivière d	e la Trinité ¹		
Année	Smolts	Mad.	Diber.	Triber.	Taux	de retoui	· (%) du sr	nolt à :	Smolts	Mad.	Diber.	Taux de 1	retour (%) di	ı smolt à :
		an + 1	an + 2	an + 3	Mad.	Diber.	Triber.	Tous		an + 1	an + 2	Mad.	Diber.	Tous
1984									67 922	1 093	1 129	1,61	1,66	3,27
1985									65 847	1 603	1 053	2,43	1,60	4,03
1986									96 316	1 352	1 243	1,40	1,29	2,69
1987									77 342	1 696	943	2,19	1,22	3,41
1988									51 590	1 892	882	3,67	1,71	5,38
1989	92 396	512	1 405	32	0,55	1,52	0.03	2,11	79 710	2 049	1 595	2,57	2,00	4,57
1990	97 768	437	1 374	11	0,45	1,41	0,01	1,86	50 109	1 349	1 165	2,69	2,32	5,02
1991	113 745	559	1 027	26	0,49	0,90	0,02	1,42	40 696	633	238	1,56	0,58	2,14
1992	154 790	619	1 135	14	0,40	0,73	0,01	1,14	50 664	410	253	0,81	0,50	1,31
1993	142 764	494	1 097	39	0,35	0,77	0,03	1,14	85 961	579	621	0,67	0,72	1,40
1994	73 961	245	699	9	0,33	0,95	0,01	1,29	55 769	348	379	0,62	0,68	1,30
1995	59 999	341	539	11	0,57	0,90	0,02	1,49	71 679	661	362	0,92	0,50	1,43
1996	104 855	304	393	18	0,29	0,38	0,02	0,68	60 899	394	331	0,65	0,54	1,19
1997		483	672	10	,			,	31 659	524	339	1,66	1,07	2,72
1998	95 455	324	384	0	0,34	0,40	0,00	0,74	28 725	396	215	1,38	0,75	2,13
1999	113 942	370	817	0	0,32	0,72	0.00	1,04	56 056	250	138	0,45	0,25	0,69
2000	50 581	268	597	19	0,53	1,18	0,04	1,75	39 510	100	49	0,25	0,12	0,38
2001	109 562	520	994	26	0,47	0,91	0,02	1,41	70 146	404	176	0,58	0,25	0,83
2002	71 649	394	625	21	0,55	0,87	0.03	1,45	44 120	385	202	0,87	0.46	1,33
2003	59 847	384	831	18	0,64	1,39	0,03	2,06	52 737	334	97	0,63	0,18	0,82
2004	54 558	366	596	13	0,67	1,09	0,02	1,79	26 797	277	183	1,03	0,68	1,72
2005	95 755	346	607	43	0,36	0,63	0,05	1,04	34 620	515	171	1,49	0,49	1,98
2006	102 702	275	519	0	0,27	0,50	0,00	0,77	• • • • •	601	213	-,	-,	-,, -
2007	135 098	599	646	17	0,44	0,48	0,01	0,93	42 717	628	144	1,47	0,34	1,81
2008	45 774	282			0,62	-,	-,	- ,	34 812	229		0,66	~, ~ ·	-,
2009	37 086	202			0,02				32 432	22)		0,00		
			Moyenne	002 2000	,	0,83 %	,	1,27 %		Moyenne	002 2000	1,38 %	0,93 %	2,32 %
			Moyenne 1	992-2008	0,42 %	0,74 %	0,02 %	1,16 %		Moyenne 1	992-2008	0,82 %	0,49 %	1,31 %

Les chiffres proviennent d'estimations obtenues en faisant la moyenne de 1981 à 1997.

Les chiffres proviennent d'estimations obtenues en faisant la moyenne de 1981 à 2004.

Les chiffres proviennent d'estimations obtenues en faisant la moyenne des années antérieures.

Incluant la pêche commerciale.

Tableau XVI. Captures et estimations d'anguilles en dévalaison printanière dans la rivière Saint-Jean de 2001-2009

Année	Marquées (M)	Capturées (C)	Recapturées (R)	N minimum	N	N maximum
2001		858	(Estimation impossi	ble, site de capture d	lifférent)	
2002		1 881	Selon taux moyen de	e 2003 à 2007	34 723	
2003	775	790	14	25 042	40 921	65 797
2004	899	1 001	34	18 588	25 766	35 610
2005	919	996	60	11 725	15 037	19 265
2006	2 054	2 418	238	18 034	21 203	23 970
2007	715	804	36	11 346	15 578	22 084
2008		353	(Estimation impossil	ble, dévalaison trop	tardive)	
2009	704	783	40	9 959	13 481	18 673

Tableau XVII. Captures et recaptures d'ombles de fontaine en dévalaison dans la rivière de la Trinité en 2009

Date	Marqu	iés (M)	Captu	rés (C)	Recapti	ırés (R)	Marqués
	Nombre	Cumul.	Nombre	Cumul.	Nombre	Cumul.	%
05-24	0		141		0		6,8
05-25	0		37		0		6,8
05-26	0		38		0		6,8
05-27	20	20	20		0		
05-28	33	53	27	27	1	1	3,7
05-29	47	100	38	65	4	5	10,5
05-30	47	147	0	65	0	5	
05-31	27	174	4	69	0	5	0,0
06-01	24	198	38	107	2	7	5,3
06-02	2	200	13	120	1	8	7,7
06-03	8	208	6	126	0	8	0,0
06-04	3	211	22	148	0	8	0,0
06-05	26	237	14	162	0	8	0,0
06-06	29	266	29	191	1	9	3,4
06-07	41	307	31	222	2	11	6,5
06-08	30	337	26	248	3	14	11,5
06-09	36	373	25	273	0	14	0,0
06-10	20	393	30	303	6	20	20,0
06-11	13	406	16	319	3	23	18,8
06-12	13	419	16	335	0	23	0,0
06-13	14	433	28	363	3	26	10,7
06-14	9	442	18	381	0	26	0,0
06-15	9	451	16	397	0	26	0,0
06-16	5	456	14	411	1	27	7,1
06-17	8	464	12	423	1	28	8,3
06-18	6	470	11	434	0	28	0,0
06-19	4	474	16	450	2	30	12,5
06-20	3	477	9	459	0	30	0,0
06-21	1	478	10	469	1	31	10,0
06-22	3	481	5	474	0	31	0,0
06-23	0	481	2	476	0	31	0,0
06-24	0	481	5	481	2	33	40,0
06-25	0	481	1	482	0	33	0,0
06-26	0	481	0	482	0	33	
06-27	2	483	3	485	0	33	0,0
06-28	0	483	1	486	0	33	0,0
06-29	0		0	486	0	33	
Total		483		486		33	6,8

C R M Évaluation : N min. N max. 483 486 33 4 983 6 933 9 945

Évaluation du 24 au 26 mai :

Pourcentage d'ombles marqués

Si les 216 ombles de fontaine avaient été marqués à un pourcentage d'ombles marqués de 6,8 %, alors : **216 * 100 %** = **3 176**

 N^{bre} estimé ombles marqués * 100 % ombles dévalés = Estimation d'ombles dévalés

6,8 %

Évaluation globale :		N min.	N	N max.	
		7 267	10 109	14 502	
Mortalité, zone de capture :	0	Produits		Partis en mer	
Mortalité, zone de recapture :	1	10 109		10 108	

Remarques : Les données en italique ne font pas partie de l'évaluation, car aucun marquage n'a été effectué avant le 27 mai.

Ces données servent à évaluer le nombre d'ombles qui ont dévalés du 24 au 26 mai.

Tableau XVIII. Caractéristiques des ombles chevaliers échantillonnés en dévalaison dans la rivière de la Trinité de 1998-2009

Année	É	chantill	on	Femelle		LT –			LF –			Poids			K			Â	ge (a	n)	
		(n)		%		X (mm)			X (mm)			<i>x</i> (g)			X				%		
	Mâles	Femelle	s Tous	1	Mâles	Femelle	s Tous	Mâles	Femelle	s Tous	Mâles	Femelles	Tous	Mâles	Femelle	s Tous	3	4	5	6	7
1998	3	14	17	82,4	220	207	209	205	192	194	80,6	65,9	68,5	0,81	0,84	0,84	0	47	35	18	0
1999	3	12	20	60,0				174	214	198	44,7	116,3	88,0	0,84	0,88	0,87	20	30	40	10	0
2000	6	10	16	62,5				185	183	184	55,9	51,2	53,0	0,88	0,84	0,85	6	81	13	0	0
2001	6	14	20	70,0				211	198	202	78,7	64,7	68,9	0,79	0,79	0,79	0	90	10	0	0
2002	9	11	20	55,0	204	208	206	189	194	192	53,7	60,5	57,5	0,79	0,77	0,78	5	74	11	11	0
2003	7	15	22	68,2	214	211	212	200	198	198	64,3	63,8	64,0	0,78	0,77	0,77	45	36	18	0	0
2004	2	13	15	86,7	213	199	201	195	185	187	61,5	48,6	50,3	0,83	0,75	0,76	13	60	27	0	0
2005	7	13	20	65,0	196	245	228	182	229	213	46,8	114,3	90,7	0,78	0,75	0,76	0	60	25	10	5
2006	9	10	19	52,6	189	192	191	176	178	177	41,6	45,6	43,7	0,76	0,75	0,75	6	81	6	6	0
2007	3	17	20	85,0	207	211	211	192	197	196	54,5	61,1	60,1	0,77	0,75	0,75	11	44	44	0	0
2008	9	11	20	55,0	213	195	203	198	180	188	60,0	45,0	51,7	0,75	0,77	0,76	20	60	20	0	0
	11	9	20	45,0	210	234	221	196	218	206	66,6	96,0	79,8	0,79	0,77	0,78					
2009	Mini	mum			195	190	190	181	176	176	44,2	40,3	40,3	0,75	0,72	0,72					
	Max	imum			328	346	346	309	327	327	232,5	252,0	252,0	0,83	0,85	0,85					
	Écar	t-type			39,2	60,7	50,1	37,6	58,8	48,3	55,2	83,7	69,1	0,02	0,04	0,03					
Total	75	149	229																		
Moyenn	e			65,1	206	212	210	192	197	195	58,4	69,3	65,2	0,79	0,79	0,79	12	60	23	5	0

Notes : LT = Longueur totale LF = Longueur à la fourche

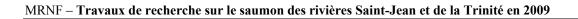

K = Facteur de condition de Fulton [100 000 * poids (g) / longueur à la fourche³ (mm)] (Thompson, 1942)

Tableau XIX. Bilan de l'exploitation et caractéristiques des ombles de fontaine anadromes dans la rivière de la Trinité de 1997-2009

Année		Retours à la r	ivière		Pêche sportive	e	Taux
		Échantillon	Longueur totale	Captures	Échantillon	Poids plein	d'exploitation
		(n)	$\frac{-}{x}$ (cm)		(n)	$\frac{}{x}$ (g)	
			(min-max)				
1997	918	918	35	502	500	559	
			(15-70)				
1998	1 345	1 345	35	880	802	390	
			(15-70)				
1999	1 177	1 177	34	391	384	470	
			(10-70)				
2000	1 119	1 027	36				
			(15-60)				
2001	1 516	803	35	487	437	464	
			(20-60)				
2002*	2 516	2 516	26	387	319	310	15%
			(10-60)				
2003	4 495	4 495	26	686	499	407	15%
			(10-65)				
2004	3 050	3 050	26	670	645	432	22%
_,,,			(10-60)		0.0		
2005	2 001	2 001	26	197	186	425	10%
2000	_ 001	2 001	(10-60)	1,7	100	0	10,0
2006	4 186	4 186	23	334	246	372	8%
2000	. 100	1 100	(5-60)	331	2.0	3,2	0,0
2007	4 480	4 480	25	463	361	397	10%
2007	1 100	1 100	(10-65)	103	501	371	1070
2008	5 922	5 922	24	598	434	326	10%
2000	3 722	3 722	(10-60)	370	737	320	1070
2009**	1 381	1 381	30	485	336	419	
2007	1 301	1 301	(10-60)	703	330	41)	
			(10-00)				
Total	34 106	33 301		6 080	5 149		
Moyenne 1997-2009				507		418	
Moyenne 2002-2008	3 807		25				13%

^{*} Modification du plancher de la cage de rétention de la passe migratoire permettant ainsi la capture de petits ombles de fontaine.

^{**} La barrière de comptage ne permet pas la capture des petits ombles de fontaine et n'était pas en fonction du 1^{er} au 7 juillet.

FIGURES

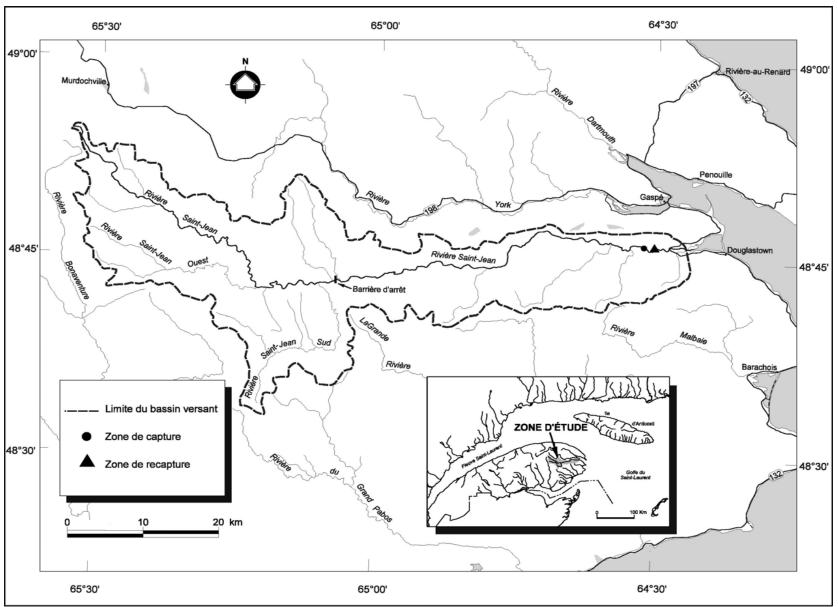


Figure 1. La rivière Saint-Jean dans son contexte géographique

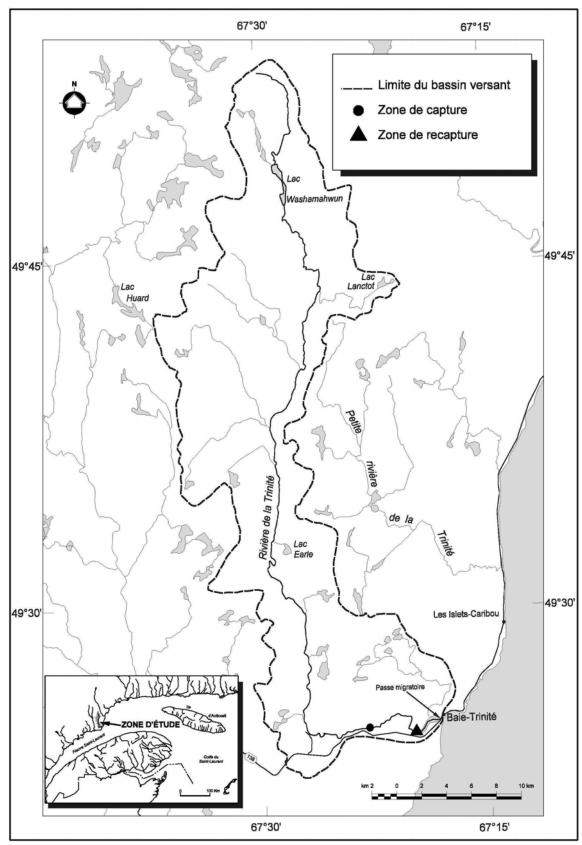


Figure 2. La rivière de la Trinité dans son contexte géographique

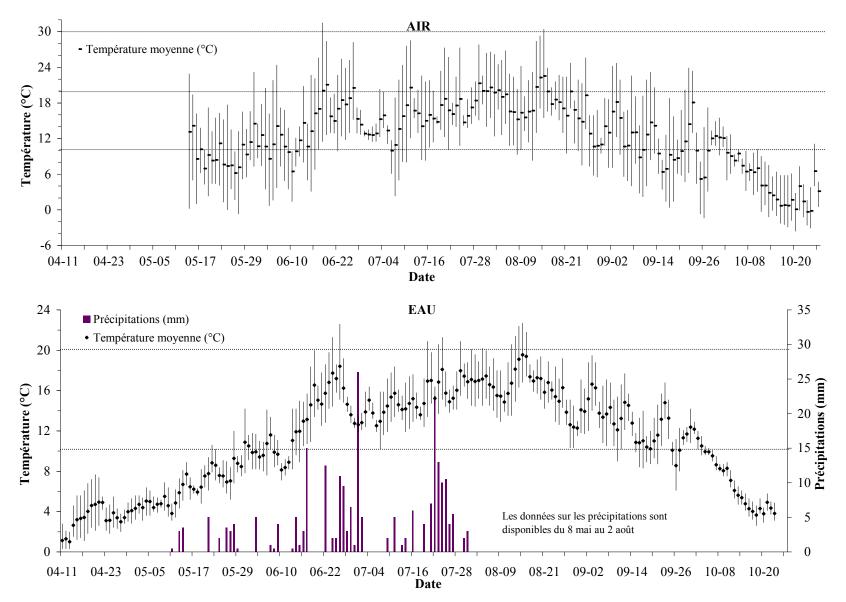


Figure 3. Précipitations et température journalière de l'air et de l'eau dans la rivière Saint-Jean en 2009

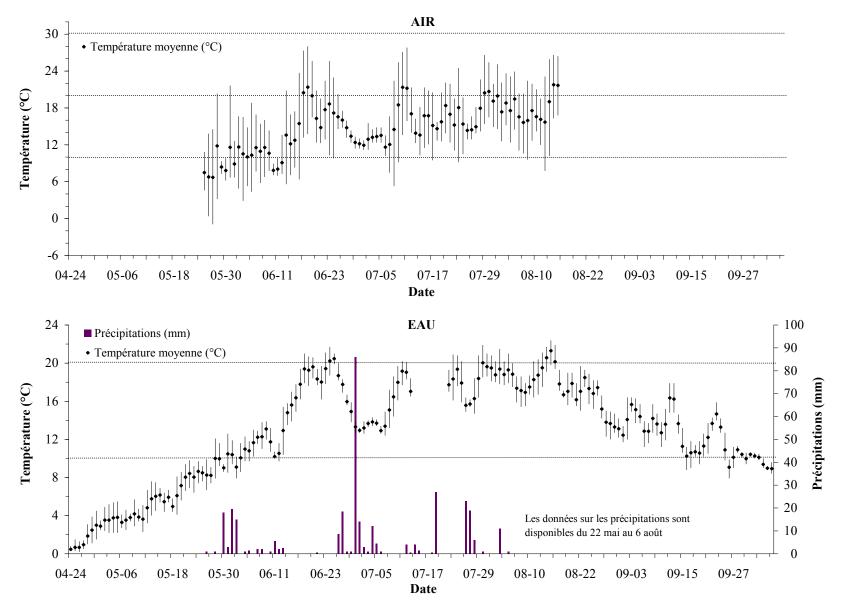
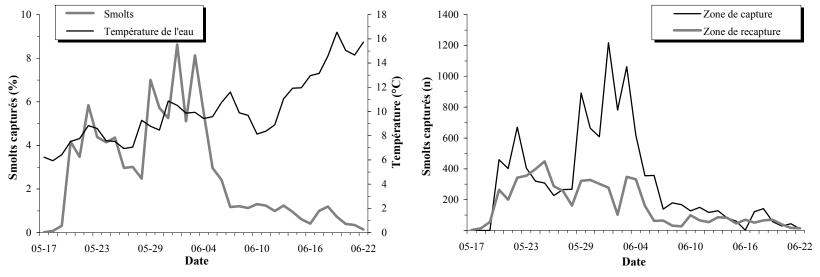
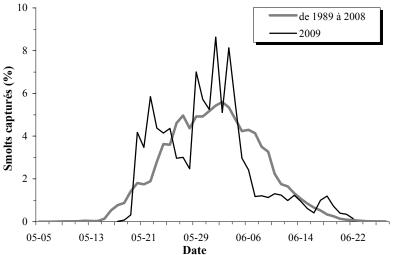
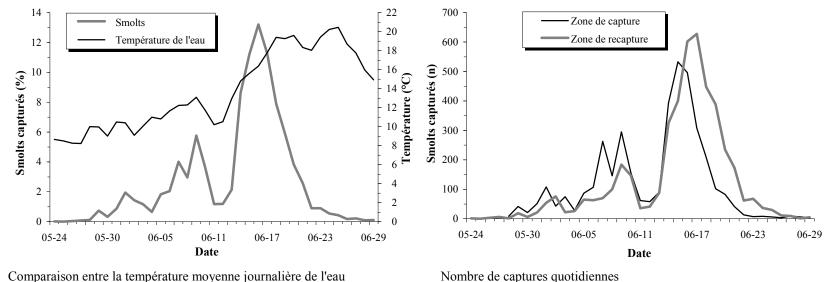
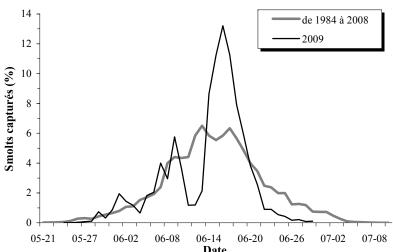




Figure 4. Précipitations et température journalière de l'air et de l'eau dans la rivière de la Trinité en 2009


Comparaison entre la température moyenne journalière de l'eau et la capture des smolts



Pourcentage de smolts capturés chaque jour

Figure 5. Dévalaison des smolts dans la rivière Saint-Jean en 2009

Comparaison entre la température moyenne journalière de l'eau et la capture des smolts

Pourcentage de smolts capturés chaque jour

Figure 6. Dévalaison des smolts dans la rivière de la Trinité en 2009

54

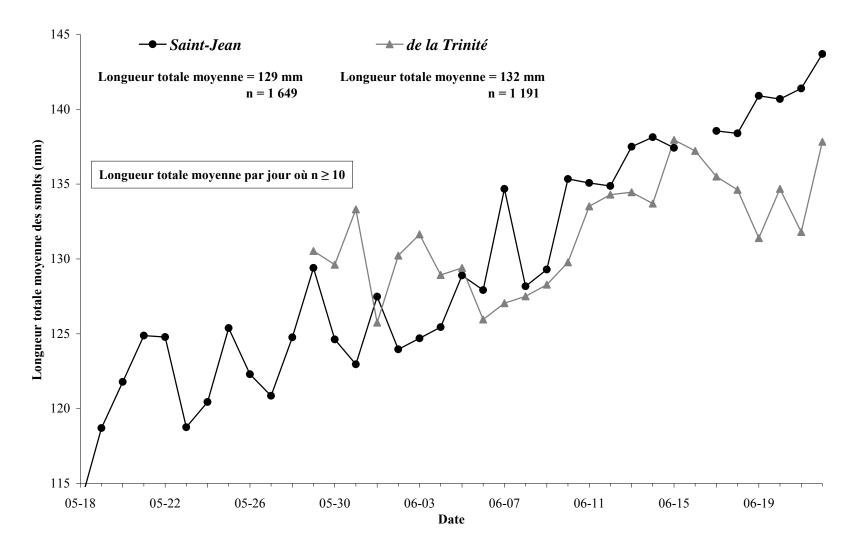
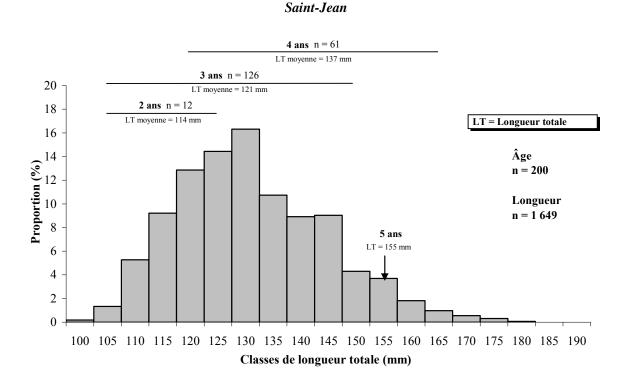



Figure 7. Comparaison de la longueur totale moyenne journalière des smolts dans les rivières Saint-Jean et de la Trinité en 2009

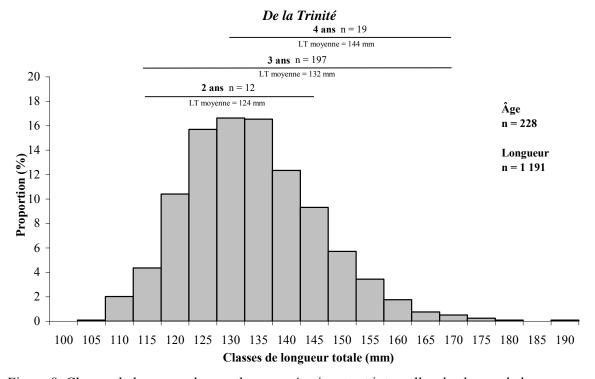
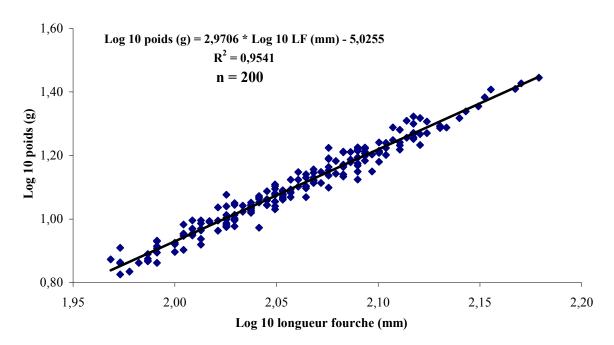



Figure 8. Classes de longueur des smolts mesurés vivants et intervalles de classes de longueur en fonction de l'âge des smolts échantillonnés dans les rivières Saint-Jean et de la Trinité en 200

Saint-Jean

De la Trinité

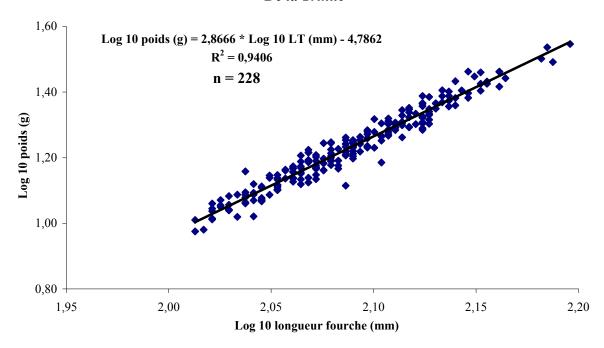


Figure 9. Relation longueur-poids des smolts des rivières Saint-Jean et de la Trinité en 2009

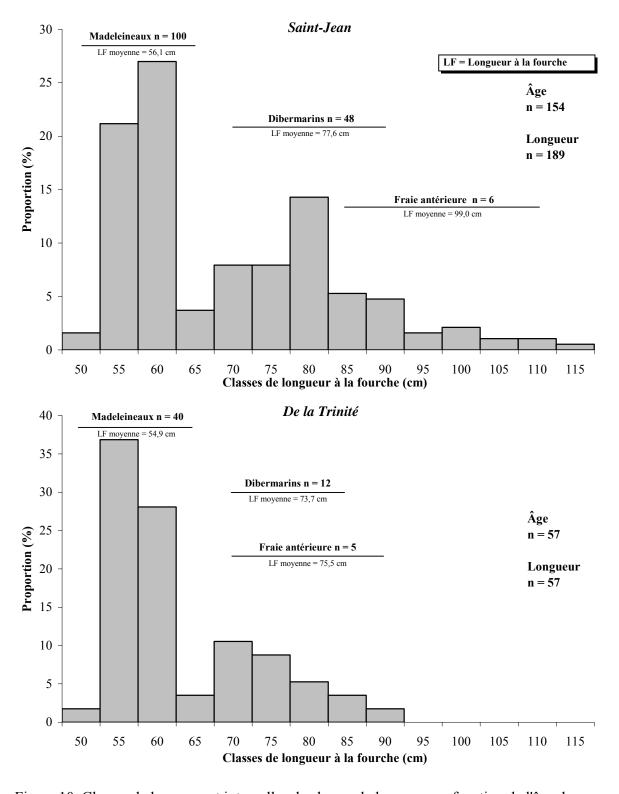


Figure 10. Classes de longueur et intervalles de classes de longueur en fonction de l'âge des saumons adultes échantillonnés des rivières Saint-Jean et de la Trinité en 2009

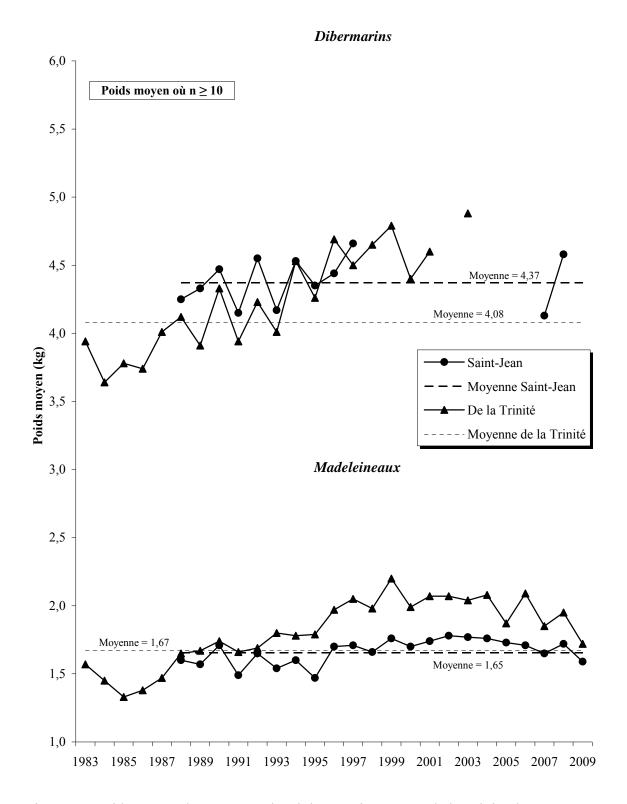


Figure 11. Poids moyen des saumons des rivières Saint-Jean et de la Trinité de 1983-2009

Figure 12. Longueur à la fourche moyenne des saumons des rivières Saint-Jean et de la Trinité de 1983-2009

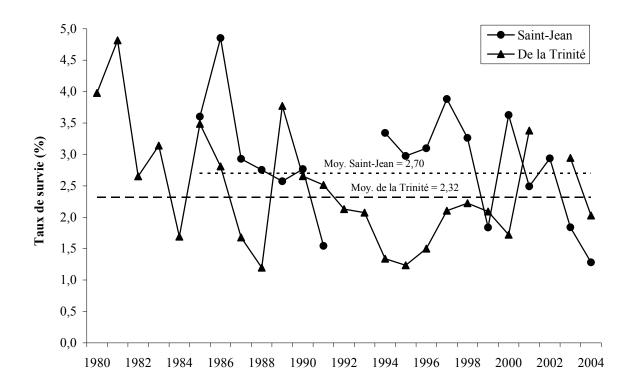
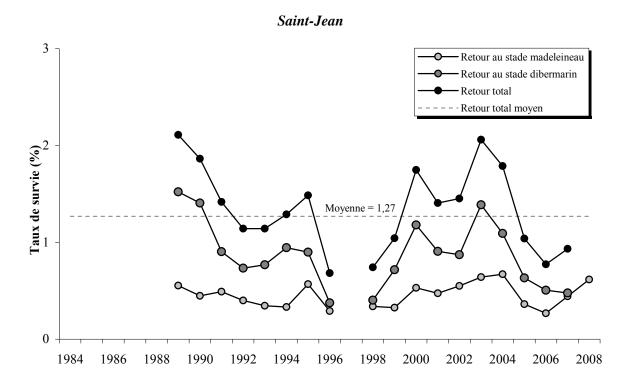



Figure 13. Taux de survie en rivière, de l'œuf au smolt, des rivières Saint-Jean et de la Trinité

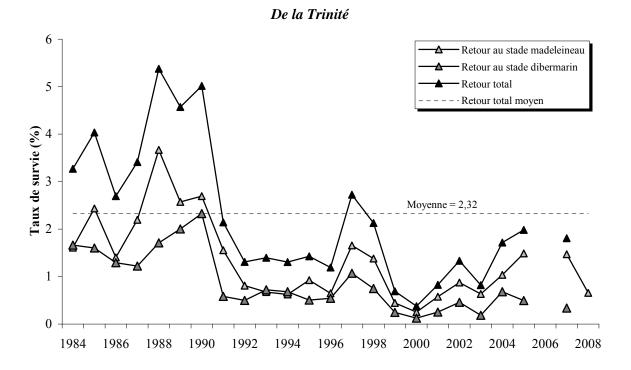
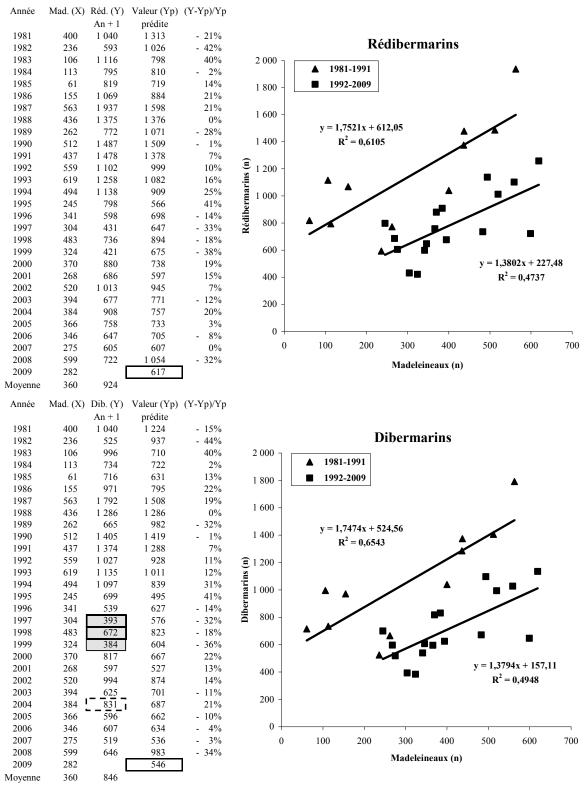



Figure 14. Taux de survie en mer, du smolt à l'adulte, des rivières Saint-Jean et de la Trinité

Les chiffres proviennent d'estimations des proportions de dibermarins observés de 1981 à 1997.

Les chiffres proviennent d'estimations des proportions de dibermarins observés de 1981 à 2004.

Figure 15. Relation entre la montaison de madeleineaux et celle des grands saumons un an plus tard dans la rivière Saint-Jean de 1981-2009

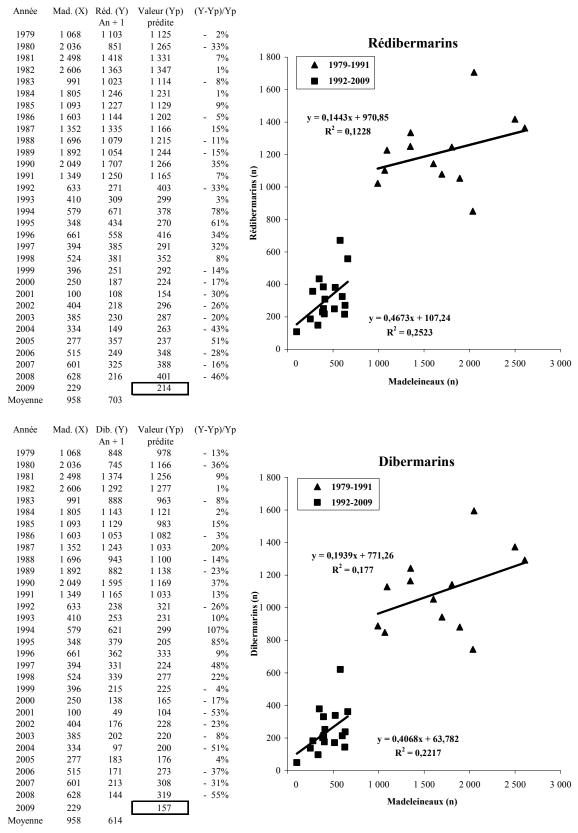


Figure 16. Relation entre la montaison de madeleineaux et celle des grands saumons un an plus tard, incluant la pêche commerciale, dans la rivière de la Trinité de 1979-2009

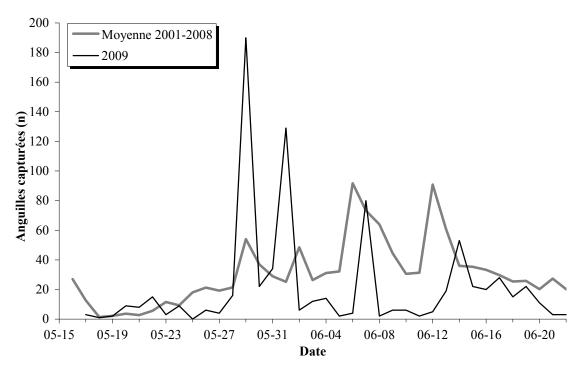


Figure 17. Anguilles capturées dans les trappes rotatives de la rivière Saint-Jean de 2001-2009

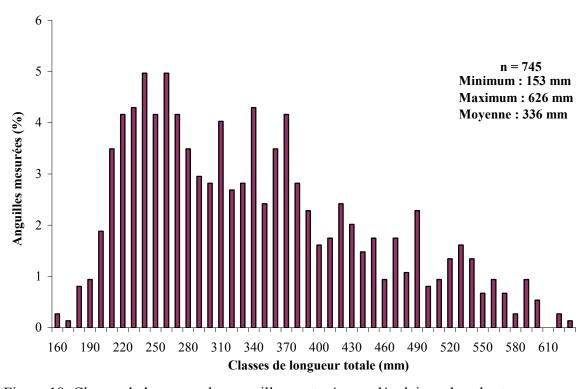


Figure 18. Classes de longueur des anguilles capturées en dévalaison dans les trappes rotatives de la rivière Saint-Jean en 2009

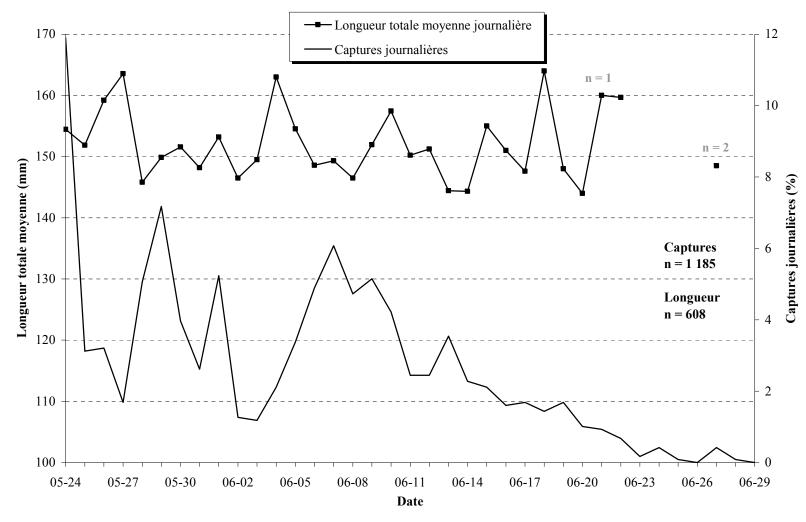
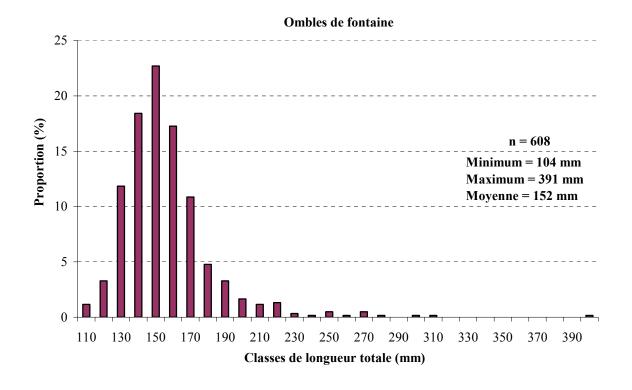



Figure 19. Longueur totale moyenne et captures journalières d'ombles de fontaine lors de la dévalaison des smolts dans la rivière de la Trinité en 2009

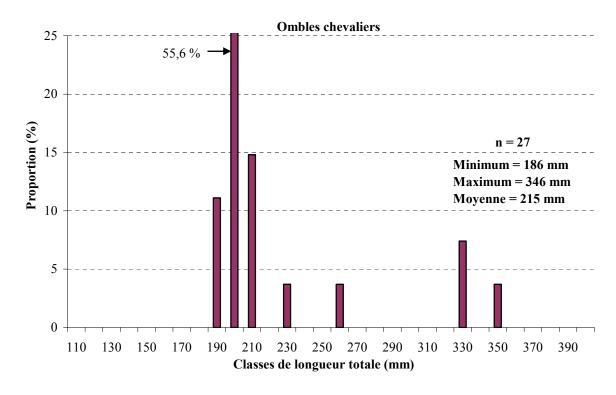


Figure 20. Classes de longueur des ombles de fontaine et des ombles chevaliers mesurés lors de la dévalaison dans la rivière de la Trinité en 2009

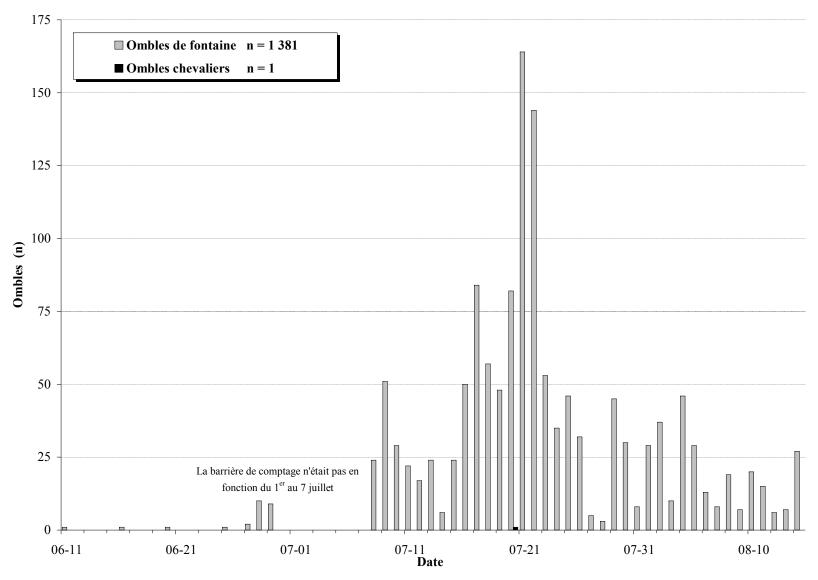


Figure 21. Nombre d'ombles de fontaine et d'ombles chevaliers anadromes en montaison enregistrés quotidiennement à la barrière de comptage dans la rivière de la Trinité en 2009

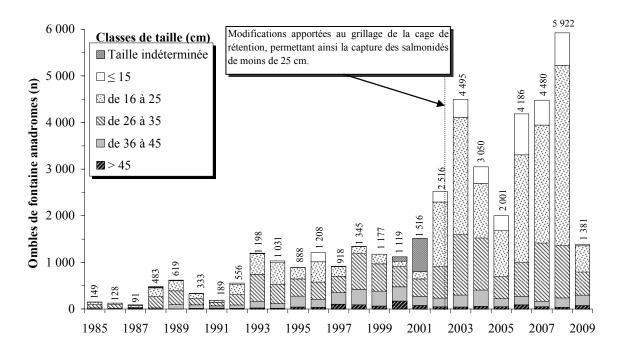


Figure 22. Nombre d'ombles de fontaine anadromes en montaison enregistrés annuellement à la passe migratoire, présentés par classe de taille, dans la rivière de la Trinité de 1985-2009

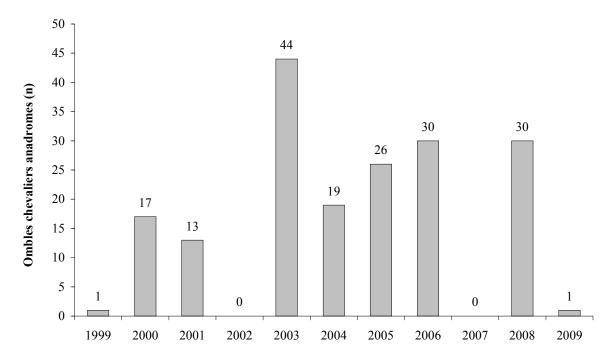


Figure 23. Nombre d'ombles chevaliers anadromes en montaison enregistrés annuellement à la passe migratoire dans la rivière de la Trinité de 1999-2009

