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A B S T R A C T   

In this study, we explored the potential benefits of using bias correction and ensemble modelling for the pre
diction of soil properties and assessment of related uncertainty. The proposed approach combines resampling 
techniques applied to soil observations, covariates and hyperparameters to generate a set of simulated values at 
the same location. The ensemble predictions resulting from the resampling are then used to generate deter
ministic predictions for the final mapping product along with the related uncertainty. We also introduced bias 
correction into the modelling framework in order to overcome conditional bias that is commonly encountered in 
digital soil mapping products. We compared the accuracy of our predictions resulting from bias correction and 
ensemble modelling with previously published global soil mapping products. Our results demonstrated that bias 
correction improves the linearity and the ratio of the variance between simulated and observed values and re
duces conditional bias by a factor of 25 to 50% for different soil properties. The performance of the deterministic 
predictions obtained from ensemble modelling is better than most of its individual component models, and is 
always located in the first quantile of the performance of all members. The analysis of uncertainty suffers from 
underdispersion, which means that local uncertainty tends to be underestimated by our approach 40 to 60% of 
the time. A comparison with the performance achieved by global soil mapping products in our area, indicates 
that global mapping products achieved low performance (R2: − 0.48–0.13) and suffered from an important 
conditional bias (alpha: 0.23–0.59, where alpha is the ratio of variance between predicted and observed values), 
leading to unrealistic predictions at the local scale. Ultimately, the combination of bias correction and ensemble 
modelling appears to be both useful and relevant for digital soil mapping and helps to address three common 
problems: equifinality, assessment of uncertainty and, correction of conditional bias in simulated values. The 
procedure described in this study is relatively easy to implement and is not computationally intensive. In 
operational use, the combination of bias correction and ensemble modelling should increase the quality of the 
information produced for environmental management and modelling, while additionally providing uncertainty 
maps.   

1. Introduction 

Predictive mapping is a means to develop tools and models for the 
assessment of a variable of interest over space and time. Predictive 
mapping aims to improve the supply of spatially explicit data and in
formation required for environmental modelling, decision-making, and 
land-use policies. Predictive maps are produced using an empirical 
model that relates georeferenced observations of some target variable or 
class to spatially continuous covariates. The covariates act as surrogates 
that account for the effect of latent environmental factors, which cannot 

directly be observed, but which are anticipated to influence the 
expression of the variable, or class, of interest (Lagacherie et al., 2006; 
McBratney, 2003). The resulting model is then applied to spatially 
exhaustive covariates to provide an optimized representation of the 
spatial distribution of the variable of interest for a given area. As the 
representation of any model at a given scale and spatial resolution is 
only partially true, it is common to test many approaches and to 
compare their respective performance relative to an independent data
set and to then select the model that achieved the best performance 
(Beguin et al., 2017). Performance values are reported to decision 
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makers to ensure informed use of the final product. As decision-making 
and field operations involve the use of spatially explicit information, one 
must also provide a spatially explicit representation of the uncertainty of 
the simulated values (Uusitalo et al., 2015; Goovaerts, 2001). The need 
for uncertainty maps is also emphasized by the high level of spatial 
heterogeneity of many environmental variables, as underlined by recent 
work in several environmental domains (Franklin et al., 2013; Ashcroft 
et al., 2012; MacMillan et al., 2007), including digital soil mapping 
(Dobarco et al., 2019; Szatmári and Pásztor, 2019; Wadoux et al., 2018). 

Digital soil maps are subject to multiple sources of error that increase 
uncertainty and may limit their operational usefulness. Uncertainty 
arises from several factors: (1) complexity and non-linearity of the 
physical processes that influence soil property expression, (2) inappro
priate representation of the spatial and statistical distribution of the 
variable of interest by available observations or covariates and, (3) use 
of inappropriate models, parameterization, or configuration, that leads 
to over/under fitting of the model (Szatmári and Pásztor, 2019; Beguin 
et al., 2017; Efstratiadis and Koutsoyiannis, 2010). (4) The performance 
of predictive maps will also be impacted if a discrepancy exists between 
the spatial scale of the latent covariates and the variable of interest 
(Goovaerts, 2000; Goovaerts, 1994). For instance, the expression of local 
variations in soil properties (higher frequency variations) cannot be 
described adequately by a covariate showing coarser spatial resolution 
(low frequency variations). (5) The occurrence of random or systematic 
errors in the observations and covariates (spatial coordinates, random 
noise, bias, trend) also represents an important source of uncertainty 
(Nussbaum et al., 2018). Finally, (6) the selection of hyperparameter 
values that lead to suboptimal performance and (7) inadequate model or 
objective functions that fail to properly represent the statistical (normal, 
skewed, log) and spatial distributions of the observations (quality, 
quantity, distribution, density) may also alter the performance of the 
model (Arrouays et al., 2017; Seiller et al., 2017; Pushpalatha et al., 
2012; Gupta et al., 2009). Many approaches have been proposed to 
quantify uncertainty in digital soil mapping. They can generally be 
classified into three categories: approaches that rely on the spatial 
structure of the data (spatial), others that rely on the intrinsic variability 
of the dataset and model (probabilistic), and combinations of both. 

Spatial prediction approaches make use of the spatial structure and 
intrinsic covariance among observations. These parameters are then 
used to infer a measure of uncertainty that will typically depend on the 
spatial distribution of the observation and the local variance of the 
variable of interest. Spatial approaches are dependent on their under
lying assumptions (e.g. stationarity), the spatial distribution of the data 
and may be affected by the properties of the variables of interest and the 
parameters chosen to model the spatial structure: lag intervals, bin 
width, marginal distribution, occurrence of trend, and anisotropy of the 
data (Oliver and Webster, 2014), which can result in the development of 
a suboptimal model for digital soil mapping. Application of spatial ap
proaches may be restricted when the number of observations is limited, 
sparse, or not equally distributed in space (Arrouays et al., 2017). Spatial 
approaches may lead, as well, to underestimation of the prediction 
variance (Oliver and Webster, 2014). The use of spatial approaches may 
ultimately be prohibitive when the numbers of soil observations and 
grid points become too large (Goovaerts, 2001). 

Probabilistic approaches combine resampling strategies and statis
tics to estimate the underlying distribution of the errors without incor
porating the spatial structure of the data or the errors in the modeling. 
Bootstrapping is a common tool for assessing uncertainty (Hastie et al., 
2009). It makes use of a random component to select a subsample of the 
original dataset to refit the same model several times. As each resam
pling affects identification of the model parameters, it results in different 
outcomes. These outcomes are next postprocessed to derive a proba
bility density function of the predicted values and their related un
certainties at a given location (Rossel et al., 2015). Most probabilistic 
approaches are non-parametric. This allows for relaxation of statistical 
assumptions required by parametric methods, and is particularly well 

suited when statistical assumptions are violated or when the variable of 
interest is an extreme event (Wetterhall et al., 2013). Recently, quantile 
regression has been introduced into digital soil mapping to assess pre
diction intervals (Szatmári and Pásztor, 2019; Vaysse and Lagacherie, 
2017; Rossel et al., 2015; Malone et al., 2014). Instead of minimizing 
error on a conditional mean, quantile regression minimizes error on 
conditional quantiles. Quantile regression can therefore be used to infer 
deterministic predictions (median) and the related uncertainty for a 
given quantile. Quantile regression is particularly well suited when a 
high number of covariates are used and when normality assumptions 
cannot be respected (Meinshausen, 2006). 

Another set of approaches combines spatial structure and probabi
listic features to generate spatially explicit realizations: Gaussian pro
cess, sequential Gaussian simulation (Poggio et al., 2016), and Gaussian 
random fields (Malone et al., 2017). As these methods are based on 
analysis of the spatial structure of residuals, they are also partially 
dependent on the spatial density and distribution of the observations. As 
limited observations may provide an incomplete understanding of the 
spatial structure of the residuals, these methods may fail to adequately 
represent uncertainty when the spatial variability of the variable of in
terest is greater than the observation density, or when a limited set of 
observations is used. Moreover, uncertainty maps resulting from anal
ysis of the spatial structure of the residuals may yield a spatial resolution 
that is not compatible with spatial variation in the variable of interest. 
More recently Beguin et al. (2017), Huang et al. (2017) and Poggio et al. 
(2016) used an alternative to stochastic approaches (INLA-SPDE, inte
grated nested Laplace approximation – stochastic partial differential 
equation) that combines a spatial latent Gaussian model and a stochastic 
partial differential equation for geostatistical modelling and uncertainty 
assessment. Although INLA-SPDE can be a powerful optimized way to 
integrate spatial components, actual implementations are limited to a 
set of specific models (Bivand et al., 2015; Lindgren and Hâvard, 2015) 
and may suffer from computational problems when a large number of 
observations is available. This may limit its adoption for large projects at 
national or regional scale (Poggio et al., 2016). 

Machine learning algorithms have been increasingly used by the 
digital soil mapping community in recent years. The learning process of 
machine learning algorithms is objective, data driven and controlled by 
hyperparameters, rather than relying on the knowledge of experts. 
Hyperparameters are a specific set of parameters that are used to control 
the learning process in machine learning algorithms. Machine learning 
represents an “easy” way to study higher order interaction between 
covariates, latent processes, and variables of interest. Most machine 
learning methods are efficient and have shown a low sensitivity to 
collinearity among covariates (Hastie et al., 2009). As many of these 
methods are non-parametric, they also overcome potential issues related 
to satisfying statistical assumptions. Machine learning algorithms can, 
however, lead to a poor model if their application is not executed using 
state of the art practices (Wadoux et al., 2020). As with any other 
method, machine learning algorithms may experience the problem of 
equifinality, in which many suboptimal sets of hyperparameters can 
achieve similar performance, but lead to different predictions (Beven 
and Freer, 2001; Anderton et al., 2002; Luo et al., 2009; Efstratiadis and 
Koutsoyiannis, 2010). Machine learning methods, like neural networks, 
general additive models, gradient boosting regression trees and, random 
forest, are especially sensitive to equifinality as they use a random 
component to initialize the training process and subsample observations 
and covariates. Consequently, the training of the algorithm may lead to 
a different model each time the algorithm is applied. 

Ensemble models may be used to reduce equifinality problems with 
appropriate tuning. Indeed, as in bootstrapping, ensemble models can 
make use of the random component to generate multiple realizations of 
the variable of interest (Sylvain et al., 2019; Brochero et al., 2015; Anctil 
and Lauzon, 2004). The random component is used to generate different 
subsets of observations, covariates, or hyperparameters that ultimately 
affect the convergence of the algorithms and the resulting model. The 

J.-D. Sylvain et al.                                                                                                                                                                                                                              



Geoderma 403 (2021) 115153

3

diversity of outcomes generated using these pseudo-models can be seen 
as potential realizations of the variable of interest. These realizations 
can then be combined (averaged) to achieve a deterministic prediction 
(Møller et al., 2019; Rasaei and Bogaert, 2019; Dobarco et al., 2017; 
Rossel et al., 2015; Malone et al., 2014). As in bootstrapping, we can also 

make use of the probability distribution function of the realizations to 
assess the uncertainty of the deterministic predictions for each point in 
an area of interest. Ensemble models are recognized to stabilize the 
performance of the model and increase the robustness of the deter
ministic predictions (Sylvain et al., 2019; Thiboult et al., 2016; Brochero 

Fig. 1. Spatial distribution of vegetation subzones, mean annual temperature, geology and superficial deposits for the study area. Sources: Ministère des Forêts, de la 
Faune et des Parcs du Québec. 
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et al., 2015; Anctil and Lauzon, 2004). A shortcoming of probabilistic 
and ensemble approaches is that they are often time consuming and 
computationally intensive. 

Most machine learning, ensemble, and geostatistical approaches 
suffer from a conditional bias (Nguyen et al., 2015; Mclennan and 
Deutsch, 2002; Zhang and Lu, 2012). In contrast to systematic bias, 
which is a systematic difference between modeled results and their 
observation counterparts, conditional bias occurs when the distribution 
of the simulated values has a lower variability than the distribution of 
the observations (Cannon et al., 2015); i.e. when higher simulated 
values are lower than the observed highest values or, vice versa, when 
lower simulated values are greater than the observed lowest values. We 
can illustrate the difference between each bias using a graphical repre
sentation (A.1). As shown in this figure, 1) unbiased predictions (back 
line) are equally spread around the 1:1 line, a line that would be 
delineated by a perfect model, 2) systematically-biased predictions are 
spread along the 1:1 line but have an overall tendency to overestimate 
(upper green line) or underestimate (lower green line) the observed 
values, while for 3) conditional biased predictions, residuals will be 
positive for lower values and negative for higher values (blue line). 

Conditional bias may be due to extrapolation, smoothing effect of the 
methods used (e.g. kriging, bagging), or the use of inadequate objective 
functions to train the model (Beaudoin et al., 2014; Magnussen et al., 
2010). Conditional bias is an important problem in digital soil mapping 
as it propagates directly into decision-making, land-use planning, or 
modelling (Goovaerts, 2001). Conditional bias has been addressed in 
climatology and hydrology, but not yet directly in digital soil mapping 
(Cannon et al., 2015; Song, 2015; Hempel et al., 2013; Zhang and Lu, 
2012; Magnussen et al., 2010). 

In this study, we propose a generic framework for the assessment of 
soil properties and their related uncertainty for non-evenly distributed 
soil datasets. The proposed approach relies on the use of bias correction 
and ensemble modelling to deal with three common problems in digital 
soil mapping: equifinality, assessment of uncertainty and occurrence of a 
conditional bias in simulated values. The proposed approach is next 
applied to a case study in digital soil mapping for the Province of Quebec 
(Canada), modelling six soil properties: sand, silt, clay, pH water, cation 
exchange capacity (CEC), and organic carbon (OC). Performance is 
compared to existing global and national digital soil maps for the same 
area. Benefits and limitations of the bias correction and ensemble 

Fig. 2. Spatial distribution of soil profiles across the study area according to each of the soil properties: a) texture, b) pH, c) CEC, and d) organic carbon. Background 
credits: Google Maps API. 

Table 1 
Descriptive statistics for each soil property.  

Properties Unit profile (n) horizon (n) Mean Min p25 p50 p75 Max Skew 

sand % 8790 13800 63 0 52 68 78 100 − 0.92 
silt % 8790 13755 26 0 16 24 34 84 0.61 
clay % 8790 13288 12 0 4 6 12 94 2.95 
pH – 7476 11214 5 3 5 5 5 8 1.26 
CEC cmol/kg 8164 12350 6 0 1 3 7 185 6.21 
OC g/kg 2985 5361 13 0 2 7 18 385 4.84  
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modelling are discussed by comparing the performance of the approach 
with independent datasets. 

2. Material and methods 

2.1. Study area 

The Province of Quebec is located in the eastern part of Canada and 
covers an area of approximately 1,7 M km2 of which the half (0.77 M 
km2) is covered by forest. The Province of Quebec encompasses a wide 
range of abiotic and biotic environments that act at different scales on 
soil properties (Fig. 1). At the coarsest scale, soil genesis is mostly 
conditioned by climatic conditions (Fig. 1a), superficial deposits 
(Fig. 1b), and geology (Fig. 1c), whereas topography and vegetation 
(Fig. 1d) influence finer scale processes (Bastianelli et al., 2017). Que
bec’s geology reflects three main geological provinces of different 
origin: (1) the Canadian shield, which is composed of igneous and 
metamorphic rocks (2) the Appalachians, which result from the lifting 
and light metamorphism of sedimentary rocks, and (3) the St-Lawrence 
platform, composed of horizontal sedimentary strata. Most of the Ca
nadian shield is dominated by acidic glacial till, glaciofluvial materials, 
and organic soil. Its southern part displays a transition zone influenced 
by the retreat of the Quaternary Sea, which is characterized by a great 
variability of superficial deposits. Deltaic and organic deposits are 
prominent near the St-Lawrence River while organic soil and clay de
posits dominate the western part of Quebec (Abitibi plains). The 
southern part of Quebec is covered by basic superficial deposits from 
marine (Champlain Sea) to lacustrine (Lampsilis Lake) deposits over
lying glacial till. Till deposits dominate higher elevations (>250 m) in 
the Appalachians. In this study, we limit the characterization of soils to 
upland mineral horizons only. 

2.2. Soil database 

We used 10 legacy soil databases collected between 1983 and 2017 
by different national and provincial agencies. These databases support 
characterization of spatial variability of mineral soil for soil texture 

(sand, silt, clay), pH water, cation exchange capacity (CEC) and organic 
carbon (OC). Soil texture was determined by the hydrometer method 
(Bouyoucos, 1962), OC with LECO (LECO corporation, Saint-Joseph 
Michigan USA) or with the loss on ignition method at 550◦C using 
Van Bemmelen factor or by wet combustion (Walkley and Black, 1934). 
Soil pH was determined with a 1:2.5 water solution and CEC with an 
inductively coupled plasma emission spectrophotometry after extracting 
exchangeable cations with an unbuffered 1 M NH4Cl solution. 

Most soil observations were collected during forest inventory pro
jects, which mainly aimed to characterize vegetation and, to a lesser 
extent, abiotic conditions. Database format, spatial distribution and 
density of soil observations were specific to each individual project. 
Therefore, all soil profile depths were reclassified to match the following 
GlobalSoilMap.net project specifications (0–5, 5–15, 15–30, 30–60, 
60–100 and 100–200 cm) and reorganized into a common format and 
units. For each soil property, we ensured that observed values fell within 
a valid range and confirmed the availability of spatial coordinates and 
depth information. When depth was missing, soil profile information 
was used to assign a conditional random depth. Conditional random 
depth was assigned using the solum depth provided in field observations 
using the following rules; Soil samples in B-horizon had to be shallower 
than the solum depth, whereas soil samples in C–horizon had to be 
deeper than the solum depth but shallower than depth to rock or the 
maximum depth observed in the profile. No correction was applied for 
time, assuming stationarity of the soil properties. 

Table 1 summarizes the numbers of soil profiles and soil horizons, 
and provides the descriptive statistics for each soil property. Soil ob
servations and profiles are representative of an important range of 
conditions that characterize the spatial and statistical distribution of 
geology, superficial deposits, climatic conditions, and land-use classes 
across Quebec (Fig. 1a). Soil observations are admittedly unevenly 
spread across the study area and among soil properties (Fig. 2). As 
sampling follows vegetation gradients and diversity, more observations 
tend to be located in the central and southern parts of the province. Soil 
texture, pH and CEC are more evenly and widely sampled, whereas soil 
organic carbon content samples are often clustered in specific regions. 

Table 2 
Description of original and final resolutions, software, number of covariates, data processing and related references for each type of covariate.  

Covariates Type Original resolution 
(m) 

Final resolution 
(m) 

Data preprocessing Software Number of 
covariates 

Reference for data 
preprocessing 

Terrain  
derivatives 

SRTM 3.0  
1 arc second 

30 50 Noise filtering  
Hydrological burning  
Gaussian pyramid (4 
levels)  
DEM derivatives 

SAGA GIS,  
Python 

120 Behrens et al. (2018) 
Millan et al. (2003) 
Richter and Schläpfer 
(2006)  

Geophysical  
data 

Magnetic  
Gravity 

1000 250 Resampling (100 m),  
3 x Mean filter (5x5),  
Resampling (250 m) 

Python 7 Richter and Schläpfer 
(2006)  

Superficial  
deposits 

Vectorized  
maps 

1/20 000 50 Classification  
Rasterization 

Python 27 This study.  

Bioclimatic Worldclim 2.0  
10 s 

1000 250 Resampling (100 m),  
3 x Mean filter (7x7)  
Resampling (250 m) 

Python 21 Richter and Schläpfer 
(2006)  

MODIS MOD09A1 
MYD09A1 
MCD15A3H 
MYD11A2 

250–1000 250 Spectral indices 
Time series analysis 
Filtering outlier  
Median value 

Google 
earth 
engine 

127 This study  

Landuse GLC30 30 30 Conversion to dummy 
variables 

Python 9 Chen and Guestrin (2016).  

Landsat5-TM Surface 
reflectance 
Tier 1 

30 60 Spectral indices 
Time series analysis 
Filtering outlier  
Median value 

Google 
earth 
engine 

105 This study and 
Behrens et al. (2018)  

Total      416   
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2.3. Environmental covariates 

We used depth of soil observations, along with a series of covariates, 
to simulate the influence of biotic and abiotic factors on soil genesis. A 
total of 416 covariates was derived from a digital elevation model, 
bioclimatic variables, geophysical datasets, superficial deposit maps and 
remote sensing imagery. We deliberately generated a large number of 
covariates to benefit from the diversity and uncertainty related to each 
covariate and to introduce higher variability into the simulated values. 
Due to differences in spatial resolution and features among all cova
riates, we did not apply any co-registration between the images and 
covariates. To address potential errors in the location of soil profiles, we 
extracted the median value of each environmental covariate using a 3 x 
3 window centered on the spatial coordinates of each observation point 
using the original resolution of the covariates. For soil mapping, we built 
a grid of 250 x 250 m resolution and extracted the median value using a 
3 x 3 window of all predictors used for the modelling. Table 2 provides a 
general description of the original dataset and of the processing steps 
performed to generate all the covariates exploited in this study. The 
interested reader can refer to the appendix B for a detailed description of 
the methods used to generate the covariates. 

2.4. Assessment of soil properties and related uncertainty 

With operational use in mind, we developed a general framework for 
the prediction of soil properties and of their related uncertainty for both 
numerical and categorical variables (Fig. 3). A modelling approach of 
gradient boosting regression trees (GBRT, Friedman, 2001) was chosen 
for its robustness to collinearity and outliers, its ability to model com
plex interactions, and its capacity to be extended to both regression and 
classification problems (Hastie et al., 2009; Chen and Guestrin, 2016). 
GBRT is a non-parametric method for building a number (N) of additive 
models that minimizes the error of poorly predicted observations. The 

optimization process is performed with a weighting function that up
dates the weight of each observation based on the prediction errors from 
the previous step. Higher weights are then attributed to the poorly 
predicted observations whereas lower weights are given to better pre
dicted observations. Using such an iterative process, GBRT is able to 
model the properties among sub-populations observed in the sample 
population. 

Many studies have demonstrated the ability of GBRT to achieve 
similar, or better, performance relative to spatial and other non-spatial 
algorithms in digital soil mapping (Nussbaum et al., 2018; Beguin 
et al., 2017; Randin et al., 2009; Marmion et al., 2008). This efficiency is, 
in part, due to the use of a stochastic component that enables sub- 
sampling of the samples and the covariates, and to the robustness of 
GBRT when there is a large number of predictors and the proportion of 
relevant predictors is small (Hastie et al., 2009, Chaps. 15, Fig.15.7). 
GBRT is also somewhat interpretable and may be used to identify the 
most important predictors (relative importance) or assess the effect of a 
given covariate on the variable of interest (partial dependence plot). 
However, such analyses must be done with caution owing to potential 
instability particularly when higher-order interactions may be involved 
(Hastie et al., 2009; Friedman, 2001). 

In this study we used the stochastic component and the potential 
instability of GBRT to generate a series of realizations of the variable of 
interest using the XGBoost implementation (Chen and Guestrin, 2016). 
XGBoost (XGBoost Python API, v0.90) was used in combination with 
resampling techniques to simulate an ensemble of potential realizations 
for each variable of interest. We split all the horizons in the soil profile 
database based on the soil profile’s unique identifier and generated 10 
subsets of the original data by selecting training (0.9) and testing 
datasets (0.1). Training datasets were used to optimize the hyper
parameters of the XGBoost model and to assess the expected prediction 
errors and avoid overfitting using an early stopping strategy. Testing 
datasets, which the model had not yet seen, were used to assess the 

Fig. 3. Schematic representation of the modelling framework used in this study. Spatial coordinates of each observation point were used to extract values from a 
series of covariates. Soil profiles were split to create training (cal, val) and testing datasets based on the soil profiles’ unique identifiers. Each calibration dataset was 
further split into 5 k-folds that were used to parametrize the hyperparameters of the XGBoost model. For each model, we introduced a bias correction at the end of the 
modelling to increase the representativeness of the predictions. All predictions resulting from the models (n = 50) were aggregated to generate a deterministic 
prediction and to assess uncertainty using the 5th and 95th percentiles of the predictions. 
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generalization errors on predictions of 50 models (10 generations x 5 
populations). XGBoost hyperparameters were optimized by running a 
Bayesian optimization algorithm to minimize the root mean square 
error. To avoid conditional bias in XGBOOST, we applied a bias 
correction at the end of each iteration. Finally, uncertainty was assessed 
for each point using the potential realizations. The following sections 
describe each step of the proposed approach and the experimental 
design used to assess its benefits. 

2.4.1. Data sampling 
For a given set of soil properties and a given model, we split the soil 

profiles into two datasets based on the soil profiles’ unique identifiers: a 
training dataset (9/10) and a testing dataset (1/10). The training dataset 
was split again into 5 equal-sized datasets in order to train 5 models. For 
each model we used 4/5 of the training dataset to fit the model (cali
bration dataset) and the remaining (1/5) to reduce overfitting and to 
estimate the prediction error of the ith model (validation dataset). The 
test dataset was used as a previously unseen source to assess the 
generalization error of each model. Each time data are split using the soil 
profiles’ unique identifiers to ensure that all horizons of the same soil 
profile belong to only one dataset (calibration, validation or testing), 
maximizing independency between datasets and the representativeness 
of the cross-validation. The entire soil database was resampled 10 times 
in order to generate a total of 50 calibration datasets, 50 validation 
datasets, and 10 testing datasets. Calibration, validation and testing 
datasets were used respectively to calibrate, to parametrize, and to 
assess the accuracy of 50 inference models (Fig. 3). We used conditional 
Latin hypercube sampling (Minasny and McBratney, 2006) with 5000 
iterations to maximize the representativeness of the validation and 
testing datasets over the calibration dataset. 

2.4.2. Bias correction 
To limit conditional bias induced by machine learning algorithms (e. 

g. XGBOOST), we introduced a bias correction procedure into the pro
cessing chain. Since bias is space dependent, it is not advisable to opt for 
an additive, or multiplicative, methodology to compensate for it. The 
method must support correction of the variance in the data conditional 
to the simulated values according to their spatial location. Conditional 
bias is then assessed using non-parametric approaches that map simu
lated values to observed values based on contextual information that 
accounts for the spatial variability of the bias, which may vary across the 
study area. 

The proposed procedure is adapted from Zhang and Lu (2012). It 
relies on a mapping function derived from ensemble regression trees 
(random forest), where the mapping function is derived from the cali
bration dataset and applied to the validation and test datasets. The 
mapping function links simulated values, SRTM elevation, and XY-grids 
derived using oblique geographic coordinates (Møller et al., 2019) to 
observed values using the MSE minimization scores. The use of SRTM 
elevation and XY-grids accounts for the spatial variability of the bias that 
varies across the study area, while the regression of simulated values 
against observed values is used to assess the bias at all points within the 
maps. Oblique geographic coordinates were used to minimize orthog
onal artefacts that may arise from the use of raw spatial coordinates (x, 
y) in machine learning algorithms (Beguin et al., 2017). Oblique 
geographic coordinates (Møller et al., 2019) are produced by repro
jecting the original x- and y- coordinates along a series of axes, tilted at 
various oblique angles relative to the x-axis. This produces a fuzzy 
representation of the original x, and y-spatial coordinates. This fuzzy 

representation lets hard classifiers, like decision trees, achieve oblique 
splitting of the data, which in turn leads to a smoothed representation of 
the variable of interest, in comparison to using a Cartesian representa
tion, while permitting management of the potential anisotropy of con
ditional bias. 

The procedure is similar to the interpolation phase in regression 
kriging, but allows management of cases when soil observations are non- 
evenly distributed across the study area. The proposed algorithm con
sists of three steps:  

1. Fit the main model using the training dataset (see Section 2.4) and 
then compute the simulated values on calibration (simxgb− cal), vali
dation (simxgb− val) and test (simxgb− test) datasets, respectively;  

2. The calibration dataset is then used to train a second model that 
exploits a random forest algorithm to fit simxgb− cal, SRTM elevation, 
and 36 XY-grids derived from oblique geographic coordinates 
against observed values (obscal). This model approximates the 
regional bias observed in the calibration dataset by minimizing the 
MSE between values simulated with XGBOOST and observed values;  

3. The model resulting from the previous step is then applied to the 
validation and test datasets to produce the final predictions. 

This simple and efficient procedure leads to minimization of the 
conditional bias in the final predictions while circumventing the 
imperative use of observations for assessment of the residuals on a new 
dataset (for which the observations are by definition not available) 
(Zhang and Lu, 2012). It also overcomes the problem of non-evenly 
distributed observations in the spatial interpolation of the residuals. 

2.4.3. Hyperparameter optimization, inference, and uncertainty assessment 
The hyperparameters used to run XGBoost were tuned independently 

for each training dataset (n = 10) using a Bayesian optimizer (Snoek 
et al., 2012) that generalized the performance of the model as a sample 
of a Gaussian process (Larmarange et al., 2017). We used the Python 
package Bayesian-optimization (v1.0.1) to evaluate multiple combina
tions of the hyperparameters. The evaluation of each set of hyper
parameters was performed using the calibration dataset through a 5-fold 
cross-validation procedure. The inverse of the mean square error (MSE) 
was used to guide the optimization. The set of hyperparameters that 
maximized the inverse of MSE is provided by the Bayesian optimization 
and used for subsequent modelling in the active iteration. For the 
optimization, we fixed the number of estimators (n = 100) and tuned 10 
hyperparameters with a limited parametric space (min–max): (1) 
maximum depth (3–10), (2) learning rate(1e− 4-1e− 1), (3) number of 
boosting (3–8), (4) minimum child weight (5–20), (5) L1 (0–0.5) and (6) 
L2 (0.5–1) regularization terms, (7) number of samples (0.5–1.0), (8) 
number of columns sampled constructing each tree (0.5–1.0), (9) 
number of columns sampled for each level (0.5–1.0), and (10) number of 
columns sampled for each node (0.5–1.0). All other hyperparameters 
were fixed to their default value. We limited the number of runs to tune 
hyperparameters to 400 in order to increase the diversity of hyper
parameters used to train XGBoost from one iteration to another. This 
was done with the intent of introducing diversity that can account for 
the uncertainty in the hyperparameters’ values. For each set of hyper
parameters (n = 10), we trained 5 models that we used to generate one 
prediction on validation datasets (n = 1 model x 10 iterations) and 5 
predictions on test datasets (n = 5 model x 10 iteration) to account for 
the uncertainty related to observations. We also limited the number of 
estimators to 100 to increase the variance in the final predictions, which 
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is required for an appropriate assessment of the prediction interval 
(Breiman, 1999). Finally, we evaluated the performance of an individual 
model (n = 1) on the validation and the testing dataset. We also used 
ensemble (n = 5) and the super-ensemble (n = 50) models to generate a 
deterministic prediction and assess the uncertainty. 

2.4.4. Ensemble predictions 
All soil properties were modelled independently at 250 m resolution. 

For each property, we recorded the mean value of all outcomes (n = 50) 
as the deterministic prediction. We applied all the models to each cell of 
the grid to generate 50 simulated values for each cell. We also applied 
bias correction to obtain a corrected simulated value for each grid cell. 
We then assessed the deterministic predictions and the related uncer
tainty as described previously. 

2.4.5. Comparison with global soil maps 
To assess the benefits of our approach for bias correction, we 

compared the performance of our model against the performance ach
ieved by three sets of digital soil maps that were available for our study 
area (Hengl et al., 2017; Beguin et al., 2017; Shangguan et al., 2014). 
These maps had been generated using different sets of soil observations 
and different modelling approaches. Hengl et al. (2017) used 150,000 
soil profiles and a stack of remote sensing-based soil covariates to train 
ensemble of machine learning based on Globalsoilmap.net specifications. 
Beguin et al. (2017) used a limited set of observations (≃500) acquired 
in the surface mineral horizon (0–15 cm) and limited covariates (12) to 
predict specific soil properties and related uncertainties through 
Bayesian geostatistical modelling based on Globalsoilmap.net specifica
tions. Shangguan et al. (2014) developed a global soil dataset based on 

its own specification, by combining a soil map of the world with regional 
and national soil databases through a set of rules and aggregating 
methods that were based on the soil type. 

2.4.6. Performance of ensemble models and bias correction 
We assessed the performance of ensemble models and bias correction 

on the validation and test datasets. We used 4 statistical metrics to 
achieve this. The coefficient of determination was used as an indicator of 
the standardized covariance, or the degree of association, that exists 
between observed and simulated values (Rodgers and Nicewander, 
1988). 

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (1)  

where yi is ith the observed values, ŷi is the simulated values and y is the 
mean of observations. The second metric is the relative root mean square 
error (RRMSE), which is a measure of accuracy of the simulated values 
(Rodgers and Nicewander, 1988). It was used to compare the relative 
accuracy among soil properties. 

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(yi − ŷi )

2
√

yi
× 100 (2)  

The third metric is the Kling-Gupta efficiency (KGE, Gupta et al., 2009) a 
measure of the goodness of fit that is often used in hydrology to assess 
the similarity between observed and simulated values. The KGE reports 
the Euclidean distance of a given model from coordinates occupied by a 
perfect prediction in a dimensional space delineated by three axes: 1) 

Fig. 4. Performance achieved across all depths for pH using cross-validation Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, RRMSE, alpha, 
beta). Violin plots represent the distribution for individual metrics, types of datasets (calibration (cal), validation (val), and test), and types of prediction (raw (n =
50), corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated by different colours: dark gray for non-corrected and light 
gray for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble for raw (se-raw) and 
corrected (se-corr) predictions. 
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correlation, 2) conditional bias and 3) systematic bias. Therefore, the 
predictions achieved with a perfect model would be fully correlated (r =
1) and unbiased (conditionally, alpha = 1, or unconditionally, b = 1), 
resulting in a Euclidean distance of 0. The three components of KGE 
were used to evaluate the effect of bias correction: the correlation (r) 
between simulated and observed values, the ratio between the simulated 
and observed standard deviation (alpha, used as an indicator of the 
conditional bias) and the ratio between the simulated and observed 
mean (β, is used as an indicator of the unconditional bias). KGE can be 
calculated using the following equations: 

KGE = 1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(3)  

r =

∑n
i=1(yi − ŷi)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2
(yi − y)2

√ (4)  

α =
σsim

σobs
(5)  

where σsim and σobs are respectively the standard deviation of simulated 
and observed values. 

β =
μsim

μobs
(6)  

where μsim and μobs are respectively the mean of simulated and observed 
values. The final metric is Lin’s concordance correlation coefficient 
(LCC, Lin (1989)), which assesses the degree of concordance between 
two measures. It is calculated on the expected value of their squared 
difference. LCC can be seen as a measure of the perpendicular distance 
between observed and simulated values from the 1:1, a line that would 
be delineated by a perfect model. In comparison, correlation coefficient 
looks at the vertical distance of simulated values from the 1:1 line. The 
coefficient takes a value 1 when the sum of the perpendicular distance is 
equal to 0 (perfect agreement) and − 1 when relationships between 
observed and simulated is inverted. 

LLC =
2 ∗ Ŝi Si

(ŷi − yi)
2
+ Ŝi

2
+ S2

i

(7)  

where Ŝi and Si are respectively the variance of simulated and observed 
values. All metrics were standardized to evaluate the relative effect of 
ensemble modelling and bias correction on model performance. The 
relative effect of ensemble modelling and bias correction on predictions 
was calculated using the following formula: 

scoresrelative(%) =
scorescor − scoresraw

scorescor
× 100 (8)  

2.4.7. Uncertainty assessment 
Uncertainty maps - In this study, we used the difference between the 

95th and 5th percentiles of all simulated values at any given point as a 
measure of the uncertainty of the final predictions at specific locations. 
These calculations were applied to all grid cells and used to generate an 
uncertainty map for each layer. 

Prediction interval reliability diagram - To evaluate the ability of 
ensemble models to represent uncertainty, we used the prediction in
terval reliability diagram. This is a graphical tool that provides a com
parison of the proportion of observations that fall within the range of 
minimum and maximum predicted values defined by 10 percentile in
tervals: 45–55, 40–60, 35–65, 30–70, 25–75, 20–80, 15–85, 10–90, 
5–95. The resulting ratio is then compared to the theoretical curve 
(Vaysse and Lagacherie, 2017; Szatmári and Pásztor, 2019; Van and 
Goovaerts, 2001). The uncertainty model is declared valid when the 
distribution of observations in a previously unseen dataset follows the 
distribution of theoretical values (pitheo == pisim). The uncertainty model 
underestimates the uncertainty when pitheo > pisim and overestimates it 

when pitheo < pisim. 

3. Results and discussion 

3.1. Bias correction and ensemble and super-ensemble predictions 

Bias correction - Fig. 4 illustrates the distribution of the performance 
values achieved for pH by each member (n = 50), each ensemble (n = 5), 
and the super-ensemble (n = 1) for non-corrected (light gray) and cor
rected (dark gray) predictions, for the calibration, validation and testing 
datasets. The figure illustrates that bias correction induces more varia
tion in the member and ensemble performance values compared to the 
raw predictions. In Fig. 4 bias correction generally increases the range of 
scores compared to the non-corrected simulations. Our results demon
strated that bias correction increases the variance of the simulations to 
the detriment of correlation, which hardly penalizes indicators like R2 

and RRMSE. On the other hand, Fig. 4 emphasizes that bias correction 
largely increases the values of KGE, alpha, and LLC metrics, which in
dicates a better physical representation of the simulated values when 
compared to non-corrected values. The benefit of bias correction is 
observed in most performance scores and most soil properties (Appen
dices, C.1–C.5). All Beta values in Fig. 4 and Appendix C are close to 1, 
which indicates that neither raw nor corrected predictions are signifi
cantly affected by systematic bias. 

Ensemble - Comparable performance in validation and testing 
datasets suggests a good parameterization of the model during the 
optimization of the hyperparameters (Fig. 4). Ensemble modelling re
duces the range of performance observed for the test datasets when 
compared to the raw members in test datasets. This behaviour is, how
ever, less marked in the calibration and validation datasets, which were 
used respectively for bias correction and tuning. This can be attributed 
to the fact that resampling of soil samples has a greater effect on the 
overall performance than a change in hyperparameters. Yet, test data
sets were resampled 5 times (hyperparameters effect), whereas cali
bration and validation datasets were resampled 50 times (resample 
effect) during the training process. The best performance of ensemble 
modelling is, on average, always better than any single one of the raw 
datasets (Fig. 4). The distribution of ensemble simulations also leads to 
optimal performance and increases the probability of attaining a per
formance equal to that achieved by the best realization. This is partic
ularly relevant for the corrected dataset. These benefits of ensemble 
modelling and bias correction are observed in most performance scores 
and for all soil properties (Appendices, C.1–C.5). 

Super-ensemble - Super-ensemble modelling, representing the mean 
of all outcomes, also had a positive effect on performance. The scores of 
the super-ensemble typically occupy the upper range of the distribution 
for most of the performance scores. The benefits are, however, greater 
for corrected predictions than for raw ones. This can be explained by the 
fact that bias correction improves variance among predictions, which 
dramatically increases the scores for KGE, alpha, and LLC and, to a lesser 

Table 3 
Performance values of the deterministic models for raw and super-ensemble 
unbiased predictions for test datasets.  

Properties Status R2 kge llc RRMSE Alpha Beta 

sand raw 0.37 0.47 0.56 25.0 0.64 0.99  
se-corr 0.39 0.55 0.60 25.0 0.73 0.99 

silt raw 0.16 0.14 0.27 47.0 0.38 0.97  
se-corr 0.17 0.28 0.36 46.6 0.55 0.99 

clay raw 0.49 0.58 0.66 90.5 0.70 1.00  
se-corr 0.54 0.64 0.71 86.4 0.76 0.99 

pH raw 0.50 0.59 0.67 10.4 0.71 1.00  
se-corr 0.53 0.65 0.71 10.2 0.77 0.99 

CEC raw 0.52 0.60 0.68 84.1 0.71 0.97  
se-corr 0.53 0.66 0.71 84.5 0.78 1.00 

OC raw 0.25 0.23 0.36 116.3 0.40 0.92  
se-corr 0.29 0.45 0.52 104.1 0.69 1.05  
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extent, for R2 and RRMSE. Again, corrected predictions always achieved 
better performance than non-corrected ones. This result justifies our 
interest in combining ensemble modelling and bias correction. 

Table 3 provides a comparison of the performance values achieved 
by the best model for raw and the super-ensemble bias corrected pre
dictions (se-corr) of all soil properties for test datasets. The differences 
observed between both configurations demonstrate that a combination 
of the super-ensemble and bias corrected predictions systematically 
improves the accuracy and representativeness of the predictions for all 
soil properties. Unconditional bias (beta ≈ 1) remains small for all 
variables and all models. This was an expected behaviour as boosting 
regression trees are built recursively to reduce unconditional bias. All 
models still underestimated the full variance of soil properties: alpha 
coefficients varying between 70% and 77% with the exception of silt 

that was underestimated even more (55%). 
The relative effect of ensemble modelling and bias correction on 

performance is summarized in Table 4. Relative scores vary slightly 
among soil properties and metrics. R2 values increase from 5 to 16%. 
The combined effect of ensemble modelling and bias correction is 
greater for KGE (10–100%) than for any other scores for all soil prop
erties and all soil depths. These improvements largely result from an 
increase in variance (alpha criterion) and a reduction of the error for 
larger values, which are more penalized by R2 and RRMSE. Bias 
correction also improves LLC scores, which evaluate how closely the 
combinations of simulated and observed values fall on the 1:1 line. The 
increases in LLC and alpha criterion values also provide support that bias 
correction leads to a more realistic modelling. Bias correction improves 
the variance of the simulated values, but has a limited impact on the 
other metrics. Bias correction greatly improves alpha values, which in
dicates that the corrected predictions are less biased and are more 
representative of the statistical distribution of the soil properties. These 
results confirm again that ensemble modelling and bias correction 
together both lead to more accurate and realistic physical representation 
of the spatial distribution of soil properties. 

3.2. General performance for soil properties 

From all simulations realized using ensemble modelling and bias 
correction (Table 3), clay achieved the best R2 (0.54), followed by pH 
(0.49), CEC (0.43), sand (0.41), OC (0.27), and silt (0.21). While silt had 
the lowest R2, it still exhibited a lower RRMSE (53%) than organic 

Fig. 5. Prediction interval reliability of the 
super-ensemble model for all soil properties. 
Assessment of the prediction interval was 
done using test datasets only. Black line in
dicates 1:1. The blue line indicates the non- 
corrected super-ensemble predictions and 
the yellow line, the super-ensemble cor
rected predictions. Observed probabilities 
depicted the proportion of observations that 
fall within the range of minimum and 
maximum predicted values defined by the 
percentile intervals, while the theoretical 
probabilities are the proportion of observa
tions expected in a given percentile interval.   

Table 4 
Relative effects of ensemble modelling and bias correction on performance 
scores for test datasets. These scores were calculated using Eq. (8). Normal font 
is used to denote a positive effect on the bias correction and super-ensemble on 
scores, whereas a bold font indicates a decrease in performance.  

Properties R2 KGE LLE RRMSE alpha beta 

Sand 5.4 17.0 7.1 − 0.1 14.1 0.0 
Silt 6.3 100.0 33.3 − 0.7 44.7 2.1 
Clay 10.2 10.3 7.6 − 4.5 8.6 ¡1.0 
OC 16.0 95.7 44.4 − 10.5 72.5 14.1 
CEC 1.9 10.0 4.4 0.5 9.9 3.1 
pH 6.0 10.2 6.0 − 1.5 8.5 ¡1.0  
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carbon content (111%), CEC (99%), and clay (88%). Considering LLC 
(0.32) and alpha coefficient (0.39), it seems that the silt model suffered 
from a marked underdispersion (alpha = 0.32) that also affected line
arity (0.36). In comparison, values for LLC and alpha, respectively, 
ranged between 0.55 and 0.73 and 0.56–0.97 for other soil properties. 
KGE values indicate suitable models (KGE > 0.6) for most of the prop
erties except for organic carbon (0.45) and silt (0.28). 

3.3. Reliability of uncertainty model 

Prediction interval reliability diagrams aim to evaluate the ability of 
ensemble models to accurately represent uncertainty of the super- 
ensemble model. Fig. 5 illustrates the prediction interval reliability di
agrams for raw and corrected predictions resulting from an ensemble of 
50 iterations for 4 soil properties: sand (Fig. 5a), CEC (Fig. 5b), pH 
(Fig. 5c), and clay (Fig. 5d). All curves fall below the 1:1 line, which 
indicates underdispersion. It suggests that local uncertainty tends to be 
underestimated for most of the observations and soil properties. Bias 
correction helps to reduce this underdispersion by increasing the total 
variance of each ensemble and increasing the accuracy of the prediction 
interval. pH and sand showed a better assessment of uncertainty in 
comparison with clay and CEC, which exhibited a highly skewed dis
tribution (Table 1). Our results indicate that our reported prediction 
intervals are suiTable 30–40% of the time, but underestimate un
certainties 60–70% of the time. Underdispersion is very common in 
ensemble modelling and generally arises when multiple models lead to 
simulations that are quite close to each other or when all sources of 
uncertainty have not been fully addressed. 

3.4. Mapping soil properties and related uncertainties 

Fig. 6 depicts the deterministic predictions achieved using the super- 
ensemble with bias correction for CEC. CEC is used as an example to 
illustrate the magnitude of change in values and related uncertainty over 

depth. Maps for other soil properties are provided in Appendix D.1–D.6. 
Simulated values were obtained using the mean of the super-ensemble 
while the quantile range was obtained using the difference between 
the 95th and 5th percentiles of all simulated values at any given point. 
Spatial distribution of CEC, and its associated uncertainty, vary sub
stantially in x, y, and z. We observe low CEC in the Northeastern part of 
the area, which is consistent with the nature of its igneous and meta
morphic rocks and acidic glacial till deposits. The highest values for CEC 
are associated with clay deposits and calcareous sedimentary rocks of 
the Appalachians. One can also observe a decrease in CEC with depth, 
which corresponds to an alleviation of pedogenetic processes and 
reduction of fertility in the soil profile with depth. However, the 
decrease in CEC with depth is more notable for soils in the northern part 
and less pronounced in areas dominated by clayey soils. It is interesting 
to note that the level of variability uncertainty in the first layer is higher 
and decreases with depth, which supposes that pedogenetic processes in 
the upper horizon generate a higher level of variability compared to 
one’s active in the parent material (100–200 cm). Yet, the relative values 
of the uncertainty in the 100–200 cm horizon (9.4 vs 5.9) increase 
dramatically compared to 5–15 cm uncertainty (11.0 vs 10.4), which 
could be attributed to a lower sample density for deeper horizons. An
thropic activities related to soil management may impact physical (e.g. 
deep plowing) and chemical soil properties (e.g. fertilizers) and land use. 
These changes induced local noise in soil observations and as well as in 
covariates, which consequently can contribute to increasing the uncer
tainty of predictions in agricultural areas. Forest management may also 
impact organic layers, but these effects are expected to be minor in 
mineral horizons (Johnson and Curtis, 2001; Nave et al., 2010). For most 
of the maps, the ratio between the simulated values and the uncertainty 
is relatively low and generally represents less than 25% of the observed 
value, which indicates a high level of agreement among models. How
ever, reliability diagrams demonstrate that most of the prediction in
tervals are underdispersed and overly optimistic. Albeit that uncertainty 
maps failed to quantify uncertainty accurately, they still permit 

Fig. 6. Cation exchange capacity (cmol/kg) for the horizons 00–05 and 100–200 cm and the associated uncertainty for each of the six GlobalSoilMap standard depths. 
Deterministic predictions were achieved using the super-ensemble with bias correction. Uncertainty was derived using the difference between upper and lower limits 
of the 90% prediction interval of all 50 predictions. The legend colour of CEC indicates low values in blue while yellow, pink, and white gradients indicate a positive 
increase in the values of CEC. The legend colours for the uncertainty maps portray low values in yellow while green and blue gradients indicate an increase in 
uncertainty. 
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Fig. 7. Spatial distribution of sand in the 0–15 cm layer for 4 different soil map products. a) Soilgrids-250m (Hengl et al., 2017); Beguin et al., 2017; Shangguan 
et al., 2014 and this study (se-corr model). To achieve a fair comparison among all products, the colour legend has been defined based on Shangguan datasets, which 
exhibits the greatest spread of values. 

Table 5 
Performance achieved by different soil map products for sand, silt, and clay contents in available horizons (0–15 cm) in Quebec (n = 7490). All products were 
generated at a spatial resolution of 250m using DSM approaches except Shangguan et al. (2014) that was produced by rasterization of polygonal legacy soil maps. Silt 
and clay were not available from Beguin et al. (2017) dataset.  

Properties R2 kge llc RRMSE R Alpha Beta Dataset 

sand − 0.08 0.12 0.21 36.0 0.27 0.53 0.90 Beguin et al. 2017  
0.01 0.11 0.22 34.5 0.37 0.39 0.88 Hengl et al. 2017  
− 0.32 0.41 0.42 39.8 0.42 1.12 1.01 Shangguan et al. 2014  
0.46 0.68 0.70 25.6 0.72 0.87 1.06 This study  

silt – – – – – – – Beguin et al. 2017  
− 0.22 0.06 0.18 53.3 0.31 0.42 1.27 Hengl et al. 2017  
− 0.48 0.26 0.26 58.6 0.26 0.98 0.91 Shangguan et al. 2014  
0.15 0.40 0.46 44.5 0.57 0.64 0.80 This study  

clay – – – – – – – Beguin et al. 2017  
0.13 0.05 0.20 105.4 0.36 0.29 1.02 Hengl et al. 2017  
− 0.18 0.34 0.36 122.7 0.37 0.91 1.17 Shangguan et al. 2014  
0.69 0.80 0.83 62.5 0.83 0.89 1.00 This study  
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identification of areas where higher uncertainties likely occur. From a 
user perspective, this permits identification of areas where predictions 
should be used with caution. It should also provide support for designing 
a soil sampling strategy that could improve the accuracy of future digital 
soil maps (Fig. 6). 

3.5. Comparison with available soil map products 

Table 5 provides a comparison of the performance of our model 
relative to available digital soil maps generated at global and national 
scales. Scores achieved by global and national products suggest that they 
fail to adequately depict the spatial variability of the reviewed soil 
properties in the 0–15 cm depth for our specific area. This is indicated by 
negative R2 and low KGE values (< 0.3). Global and national products 
also yield RRMSE that is 1.5 times higher than that achieved in this 
study. Global maps derived from DSM (Hengl et al., 2017; Beguin et al., 
2017) suffer from an important conditional bias (alpha criterion < 0.5) 

and achieve a low correlation with soil observations used for this study 
(R < 0.37). The maps derived from pedotransfer functions and legacy 
soil maps by Shangguan et al. (2014) provide a better representation of 
the soil properties when compared to other global soil map products, 
even if they are limited by a lower spatial resolution. Decomposition of 
the KGE (R, alpha and bias) reveals that Shangguan et al. (2014) prod
ucts are more highly correlated (R) with available soil point data while 
minimizing the conditional and unconditional bias (alpha and beta 
scores ≈ 1). The increase in KGE is, however, mostly explained by a 
reduction of the conditional bias and, to a lesser extent, by an increase in 
correlation (R). These findings are also confirmed by an increase in LLC. 
In contrast, Hengl et al. (2017) exhibits an important conditional bias 
(alpha: 0.29–0.42). This suggests that the maps generated in this study 
are more accurate than other available products for all soil properties 
and using all accuracy metrics. 

Fig. 7 presents a visual comparison of the spatial distribution of sand 
content for four soil map products. All soil map products vary in their 

Fig. 8. Spatial distribution of USDA soil texture classification in the 0–15 cm layer for 3 different soil map products. a) Soilgrids-250m (Hengl et al., 2017), 
Shangguan et al. (2014) this study (se-corr model). The colour legend has been defined to illustrate the full range of soil textures portrayed by all 3 datasets. 
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ability to represent the spatial pattern of the soil properties. Soilgrids- 
250m (Hengl et al., 2017) and Beguin et al. (2017), which profess a 
very high spatial resolution, failed to recognize the spatial pattern of 
legacy soil maps that is apparent in Shangguan et al. (2014). Soilgrids- 
250 m and Beguin et al. (2017) maps also suffer from an important 
conditional bias and highly underestimate the sand content when 
compared to Shangguan et al., 2014 and to this study. This can be 
explained by the scale of modelling and the fact that soil observations in 
eastern Canada were of limited availability for this area in both these 
projects. The integration of expert knowledge from the Soil Landscapes 
of Canada (SLC-3.2, Soil Landscapes of Canada working Group, 2010) in 
Shangguan et al. (2014) products results in a better delineation of the 
geomorphological patterns and reduces conditional bias compared to 
the two previous products, although the spatial resolution is low. (See 
Fig. 8). 

The maps generated by this study show less bias than other available 
digital soil mapping products. However, our simulated values still suffer 
from an important conditional bias and fail to depict local variability 
among sites in the northern part of the study area. This can be explained 
by the large extent of the study area, the highly skewed behaviour of 
sand fraction content, the sparse distribution of observations across the 
landscape, and the inability of currently available covariates to 
adequately represent soil spatial variability at finer resolutions (Piikki 
and Söderström, 2017). Nevertheless, this project captures most of the 
dominant spatial patterns evident in the soil texture map of Shangguan 
et al. (2014) (Fig. 7b, c), even in higher latitudes where no soil obser
vations were available. Soilgrids; 250 m maps, which suffer from a 
conditional bias, identified only two soil texture classes over the entire 
area (Fig. 7a). 

Readers should keep in mind that the purpose, scale, size of the area, 
data and method differ from one project to another. Hengl et al. (2017) 
and Beguin et al. (2017) both acknowledged that accuracy of their 
products was limited in many areas due to an insufficient number of 
ground truth training points in many undersampled geographic regions. 
The map comparisons provided here mostly aim to demonstrate to po
tential users that 1) conditional bias is very common in many current 
DSM products (see alpha Table 5), 2) that conditional bias may affect any 
applications that require physical consistency, such as hydrological 
modelling or pedotransfer functions, and 3) that any use of soil mapping 
products should be preceded by a validation that is specific to the area of 
interest. 

3.6. Limitations of the proposed methodology and future work 

Ensemble modelling - This work demonstrates the validity and po
tential utility of adopting ensemble modelling and bias correction for 
digital soil mapping. It demonstrates that ensemble models provide, on 
average, a more robust representation of soil properties than any of the 
individual component models, while bias correction increases the range 
of prediction values and reduces the conditional bias that is a common 
feature of machine learning and geostatistical interpolation. The com
bination of machine learning algorithms, ensemble modelling, and bias 
correction results in a more realistic representation of the spatial dis
tribution of soil properties in the context of environmental modelling, 
while also providing a spatially explicit assessment of the uncertainty. 
The bulked accuracy resulting from the aggregation of the ensemble is 
always in the upper range of the distribution of all the models used to 
build the ensemble. Therefore, ensemble modelling helps overcome the 
equifinality problem by reducing the risk of selecting a suboptimal 
model that would underperform in reality. Although the performance 
achieved here for most soil properties is quite good and comparable, or 
better, than for similar digital soil mapping projects, it is possible that 
resorting to more localized high-quality datasets would have provided a 
complementary perspective to the proposed procedure. 

bias correction - The proposed methodology utilizes several princi
ples that can be implemented for other digital soil mapping projects. The 

method used for bias correction is simple, easy to implement and im
proves the representativeness of the values (linearity and variance) 
without reducing the overall performance. In this study, random forest, 
which is simple to parametrize, was used for bias correction, as a proof 
of concept. 

Uncertainty assessment - As our approach relies on a diversity of 
models, it reduces the number of subjective decisions that must be taken 
by the modeller and increases the generalization and reproducibility of 
the mapping process and its operationalization. Ensemble modelling 
helps to stabilize performance for both validation and testing. Unlike 
typical spatial approaches, the assessment of uncertainty with ensem
bles is not dependent on the spatial distribution of the data, which was a 
problem in this study. However, the predictions resulting from our 
approach still contain conditional bias that may result in underestima
tion of the uncertainty in the final map. 

Future work - For demonstration purposes, we limited our explora
tion to the use of GBRT for the modelling and to the use of random forest 
for bias correction. Future work should investigate how other ap
proaches would perform at generating diversity in simulated values. In a 
similar way, it would be relevant to evaluate how the number of soil 
observations and covariates might alter the ability of the proposed 
method to assess uncertainty. Assessment of uncertainty with ensembles 
relies on the hypothesis that ensemble predictions are drawn from the 
same underlying distribution. However, this hypothesis is rarely 
respected by ensemble machine learning approaches. This may result in 
biased predictions that tend to underestimate the variance of the 
observed values and lead to underdispersion of the uncertainty as 
encountered in this study. The latter is a common problem in geo
sciences (geophysics, climate, hydrology), and generally arises when not 
all sources of uncertainty are considered. It could be possible to over
come underdispersion by post-processing ensemble probability density 
functions resulting from the ensemble using Bayesian theory (Bröcker 
and Smith, 2008; Thiboult et al., 2016; Goovaerts, 2001). By doing so, 
ensemble outcomes would be considered as information and not as 
direct observations, which would relax the hypothesis that ensemble 
predictions are drawn from the same underlying distribution. Future 
work should investigate the potential of other modelling approaches for 
bias correction (e.g. support vector regression, deep neural networks, 
etc.). 

Finally, it is worth recalling that most digital soil maps result from a 
model that aims to explain the largest possible variance of the variable of 
interest. The size of the area, the number, density, and spatial distri
bution of soil observations and covariates may also impact the potential 
representation of the variable of interest in feature space as defined by 
covariates. This can then limit the ability of the model to express vari
ability at a local scale (Hastie et al., 2009) and the accuracy of the 
prediction interval. This study covers a large region with significant 
gradients in climate, superficial deposits and geological materials. The 
large size of the region may have favoured the representation of larger- 
scale processes and reduced the ability of the model to recognize shorter 
range, local, variations. Likewise, many variables exhibited a skewed 
behaviour, which can arise from the spatial distribution of observations 
across the landscape or the inability of spatial covariates to represent 
soil spatial variability at finer resolutions. It is important to recall that 
most of the soil observations were collected in the context of forest in
ventory, which mainly aimed at characterizing vegetation and, to a 
lesser extent, abiotic conditions. Such a stratified sampling design may 
lead to an unbalanced dataset and to an important bias in the assessment 
of statistical and spatial distributions of soil properties (Rossel et al., 
2015). For instance, only the productive sites were sampled and only a 
minority of soil profiles were sampled over their entire depth. Sampling 
strategies used have potentially limited the ability of the model to 
capture short range variations. This could also explain why the proposed 
approach has underestimated the uncertainty in this study (Vaysse and 
Lagacherie, 2017). 
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4. Conclusion 

In this study, we proposed and examined the introduction of bias 
correction in a digital soil mapping framework and explored the po
tential use of ensemble modelling to assess soil properties and their 
related uncertainty. Bias correction increased the range of predicted 
values and the linearity of the predictions when compared to original 
raw values, with only a very limited impact on other performance 
scores. Bias correction yielded a better representation of the absolute 
values of the soil properties, which is a prerequisite for environmental 
modelling under non-stationary conditions like climate change. 
Through cross-validation, we showed that ensemble modelling helped 
deal with the equifinality problem and achieved better performance 
than most of the raw members, while supporting assessment of uncer
tainty when the number of observations is limited or not equally 
distributed in space. However, analysis of prediction interval diagrams 
demonstrated that our intervals were underestimated for most of the soil 
properties. This could be related to factors that were not adequately 
explored in this study, such as the quality of legacy soil datasets, the size 
of the area, the clustered spatial distribution of the soil observations, the 
highly skewed behaviour of soil properties, the inability of covariates to 
fully represent soil spatial variability, or the overwhelming weights of 
the overall variance in the model compared to local variance. The 
approach presented here remains a proof of concept and requires further 
investigation. More work should be devoted to identifying which part of 
the modelling has the greatest impact on the spread of the ensemble 
predictions and consequently on the accuracy of the prediction interval. 
A comparison of the products resulting from this study with other 
available products suggests that global and national scale modelling 
produced a biased and poor representation of the spatial distribution of 

the examined soil properties. In this context, we would recommend 
limiting the use of current global mapping products for fine scale 
studies. Although this work focused on a case study in digital soil 
mapping, the proposed methodology can be applied equally to other 
predictive mapping tasks. At an operational level, it is expected that 
products that make use of ensemble modelling and bias correction 
together will increase the quality of the information derived in the 
context of environmental modelling. All digital soil maps resulting from 
this study will be available for download via https://www.donnees 
quebec.ca under the Creative Commons 4.0 License. 
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Appendix A. Conditional bias vs systematic bias 

See Fig. A.1. 

Fig. A.1. Comparison between observed values and non-biased (1:1 line), systematically bias and conditionally bias predictions.  
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Appendix B. Processing of environmental covariates 

B.1. Terrain derivatives 

We used the NASA Shuttle Radar Topography Mission version 3.0 Global 1 arc second digital surface model (SRTM-DSM) to generate a series of 
topographic derivatives to simulate the effect of topography on water and sediment accumulation patterns (Moore et al., 1993; Pennock, 2003). 
SRTM-DSM, which has an optimal resolution of 30m at the equator, was resampled to 50m resolution and then filtered with multiple average filter 
windows to reduce the effect of local noise in inducing spurious errors in topographical derivatives (Macmillan et al., 2000). SRTM-DSM was hy
drologically corrected using hydrological features provided by local agencies (Gouvernement du Québec, 2016). The elevation values along known 
hydrological networks were reduced by 5m using the “Burn stream network into dem” function in SAGA GIS software (Conrad et al., 2015). The 
resulting DEM was next used to generate 19 common topographical derivatives in SAGA GIS. We also implemented the mixed scaling approach 
proposed by Behrens et al. (2018) to derive a multiscale representation of the DEM and associated topographical features (at 4, 8, 16, 32, and 64 
octaves). These procedural steps resulted in 120 final topographical covariates. 

B.2. Bioclimatic variables 

We used 10-s worldclim 2.0 bioclimatic variables to represent the effects of annual, seasonal, and extreme climatic conditions on soil pedogenesis. 
All covariates were resampled to 250m spatial resolution following the procedure proposed by Richter and Schläpfer (2006) (Section 9.5). Resampling 
of the bioclimatic variables ensures a smooth transition of climatic conditions and reduces block effects that typically result from the extraction of 
pixels at their original horizontal resolution. 

B.3. Aeromagnetic and gravitational datasets 

Compilations of aeromagnetic and gravity survey data from the Geological Survey of Canada (Gouvernement du Canada, 2019a) were used as 
covariates to account for the effects of geology on soil properties. The aeromagnetic grid resulted from an interpolation of continuous flight-lines 
spacied 800 m apart and taken at an altitude of 305 m above the ground surface. All aeromagnetic data were homogenized to account for the 
arbitrary datums, slow variations of the Earth’s magnetic field over time, and differing survey specifications (Gouvernement du Canada, 2019b). From 
all available datasets, we used the 1st Vertical Derivative and Residual Total field. Magnetic field reflects bedrock properties and provides qualitative 
and quantitative information useful for geological delineation (Kiss and Tschirhart, 2017). Compilations of magnetic layers were available at a 200 m 
resolution and were not resampled. From the gravity survey, we used Bouguer effect, gravity anomalies, 1st vertical and horizontal gradients, and 
isostatic residual. These data can reflect the spatial distribution of geology and superficial deposits (Haldar, 2013). Gravity layers were resampled to a 
250 m spatial resolution using the method proposed by Richter and Schläpfer (2006) (Section 9.5). 

B.4. Superficial deposits 

We extracted information about superficial deposits from 1:20k forest maps produced by the Quebec Government (Direction des inventaires 
forestiers, 2009). As the number of unique classes was very high and would have required the creation of a significant number of dummy variables 
(>180), we reclassified superficial deposits based on their functional attributes and properties. This operation led to the creation of 27 unique classes 
differentiated according to deposit type (till, eolian, etc.), granulometric fractions (sand, silt, clay, boulder), occurrence of organic layers, deposition 
depth, deposition process, landforms, mineralogical class, and land use. 

B.5. Remote sensing imagery 

Remote sensing imagery was used to account for the effects of disturbance and land use influences on soil properties. We used Moderate Resolution 
Imaging Spectroradiometer (MODIS) imagery and Landsat5-TM to derive proxies of vegetation phenology, land surface temperature, and surface 
states, as we hypothesized that local conditions or soil properties should vary in response to different land covers or land uses. To account for un
certainty in remote sensing imagery and to maximize the ability of ensemble models to generate a higher diversity of simulations, we exploited various 
indices that facilitate characterization of the surface. We used Google Earth Engine to process and extract seasonal, annual, and multiannual spectral 
indices. 

MODIS time series - We used surface reflectance (MOD09A1, MYD09A1), leaf area index, fraction of photosynthetically active radiation 
(MCD15A3H) and land surface temperature (MYD11A2) products between 2002 and 2012 to derive a series of covariates based on a sensor with high 
temporal resolution (multi-day) but a low spatial resolution (250–1000 m). MYOD9A and MYD11A2 reported surface reflectance at a resolution of 
500 m over an 8-day period for 7 spectral bands ranging between 459 nm and 2155 nm. Surface reflectance images included an atmospheric correction 
and were published with quality data and observation bands (solar zenith angle, view zenith angle). We first used information from the quality and 
observations band to select only pixels with no clouds, a view angle lower than 25◦ and a solar zenith angle higher than <45◦. The stacks resulting from 
the preprocessing were then used to create a time series that represented the evolution of a spectral band over time. We used the normalized difference 
vegetation index (NDVI, Tucker and Sellers, 1986), enhanced vegetation index (EVI, Huete et al., 1994), and land surface water index (LSWI, 
Chandrasekar et al., 2010) to characterize the structure and the seasonal behaviour of the vegetation and land surfaces. These indices were calculated 
for each 8-day period and aggregated to various lag times (month, seasonal growth, annual, and multi-annual). To reduce artefacts in the resulting 
layers and to limit the analysis to the growth period, we assessed the mean to pixel values located between 50th and 90th percentile of each pixel. 
MCD15A3H and MYD11A2 datasets provided an assessment of the vegetation (LAI, FPAR) and land surface temperature (daily, nightly) at a resolution 
of 500 m and 1000 m, respectively. Finally,we extracted the 75th percentile from the raw values for each lag time. 

Landsat5-TM spatio-temporal series - We also used surface reflectance products from USGS Landsat 5 Surface Reflectance Tier 1, a series of 
covariates from a sensor with high spatial resolution (30–120 m) but a low temporal resolution (16 days). These products assess reflectance in 6 
spectral bands spread between 459 nm and 2155 nm and assess brightness temperature for 1 thermal band (10.4–12.5 nm). All data were corrected for 
atmospheric disturbance and orthorectified for geometrical distortions. Quality information was used to remove pixels that were saturated, masked by 
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clouds, cloud shadowed, or covered by snow or water. We calculated a series of indices for observations and aggregated the resulting values to 
different lag times (monthly, seasonal growth, annual, and multi-annual). Finally, we applied the mixed scaling approach proposed by Behrens et al. 
(2018) to derive a multiscale representation that could enhance low frequency features (4, 8, 16, 32, and 64 octaves). All Landsat5-TM derivatives 
were resampled to a 60 m resolution to address memory problems encountered in Google Earth engine. Processing resulted in the creation of 127 
layers for MODIS and 105 layers for Landsat5-TM. 

Appendix C. Cross-validation 

C.1. Cross-validation – sand (%) 

See Fig. C.1. 

Fig. C.1. Performance achieved across all depths for sand using cross-validation, Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, RRMSE, 
alpha, beta). Violin plots represent the distribution for individual metrics, types of dataset (calibration (cal), validation (val), and test) and types of prediction (raw (n 
= 50), corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated with different colours: dark gray for non-corrected, 
light gray for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble for raw (se- 
raw) and corrected (se-corr) predictions. 
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C.2. Cross-validation – silt (%) 

See Fig. C.2. 

Fig. C.2. Performance achieved across all depths for silt using cross-validation, Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, RRMSE, alpha, 
beta). Violin plots represent the distribution for individual metrics, types of dataset (calibration (cal), validation (val), and test) and types of prediction (raw (n = 50), 
corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated with different colours: dark gray for non-corrected, light gray 
for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble for raw (se-raw) and 
corrected (se-corr) predictions. 
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C.3. Cross-validation – clay (%) 

See Fig. C.3. 

Fig. C.3. Performance achieved across all depths for clay using cross-validation, Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, RRMSE, 
alpha, beta). Violin plots represent the distribution for individual metrics, types of dataset (calibration (cal), validation (val), and test) and types of prediction (raw (n 
= 50), corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated with different colours: dark gray for non-corrected, 
light gray for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble for raw (se- 
raw) and corrected (se-corr) predictions. 
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C.4. Cross-validation – pH 

See Fig. C.4. 

Fig. C.4. Performance achieved across all depths for pH using cross-validation, Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, RRMSE, alpha, 
beta). Violin plots represent the distribution for individual metrics, types of dataset (calibration (cal), validation (val), and test) and types of prediction (raw (n = 50), 
corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated with different colours: dark gray for non-corrected, light gray 
for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble for raw (se-raw) and 
corrected (se-corr) predictions. 
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C.5. Cross-validation – Organic carbon (g/kg) 

See Fig. C.5. 

Appendix D. Digital soil maps 

D.1. Digital soil maps – sand (%) 

See Fig. D.1. 

Fig. C.5. Performance achieved across all depths for organic carbon using cross-validation, Bayesian optimization and XGBoost for various metrics (R2, KGE, LLC, 
RRMSE, alpha, beta). Violin plots represent the distribution for individual metrics, types of dataset (calibration (cal), validation (val), and test) and types of pre
diction (raw (n = 50), corrected (corr), ensemble (e, n = 10), and super-ensemble (se, n = 1)). Prediction types are illustrated with different colours: dark gray for 
non-corrected, light gray for bias correction. For each model configuration and prediction type, the star identifies the performance resulting from the super-ensemble 
for raw (se-raw) and corrected (se-corr) predictions. 
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Fig. D.1. Sand content for each of the six 
GlobalSoilMap standard depths and the 
associated uncertainty for each of the six 
GlobalSoilMap standard depths. Determin
istic predictions were achieved using the 
super-ensemble with bias correction. Un
certainty was derived using the difference 
between upper and lower limits of the 90% 
prediction interval of all 50 predictions. The 
legend colour of sand content illustrates low 
values in blue while yellow, pink, and white 
gradients indicate increasing values of sand 
content. The legend colour for the uncer
tainty maps identifies low values in yellow 
while green and blue gradients indicate 
increasing values for uncertainty.   

J.-D. Sylvain et al.                                                                                                                                                                                                                              



Geoderma 403 (2021) 115153

23

D.2. Digital soil maps – silt (%) 

See Fig. D.2. 

Fig. D.2. Silt content for each of the six 
GlobalSoilMap standard depths and the 
associated uncertainty for each of the six 
GlobalSoilMap standard depths. Determin
istic predictions were achieved using the 
super-ensemble with bias correction. Un
certainty was derived using the difference 
between the upper and lower limits of the 
90% prediction interval of all 50 pre
dictions. The legend colour for silt content 
indicates low values in blue while yellow, 
pink, and white gradients indicate a positive 
progression values of silt content. The 
legend colour for the uncertainty map in
dicates low values in yellow while green 
and blue gradients indicate increasing 
uncertainty.   
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D.3. Digital soil maps – clay (%) 

See Fig. D.3. 

Fig. D.3. Clay content for each of the six 
GlobalSoilMap standard depths and the 
associated uncertainty for each of the six 
GlobalSoilMap standard depths. Determin
istic predictions were achieved using the 
super-ensemble with bias correction. Un
certainty was derived using the difference 
between the upper and lower limits of the 
90% prediction interval of all 50 pre
dictions. The legend colour for clay content 
indicates low values in blue while yellow, 
pink, and white gradients indicate a positive 
progression of values for clay content. The 
legend colour for the uncertainty map in
dicates low values in yellow while green 
and blue gradients indicate increasing 
uncertainty.   
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D.4. Digital soil maps – CEC (cmol/kg) 

See Fig. D.4. 

Fig. D.4. Cation exchange capacity for each 
of the six GlobalSoilMap standard depths 
and the associated uncertainty for each of 
the six GlobalSoilMap standard depths. 
Deterministic predictions were achieved 
using the super-ensemble with bias correc
tion. Uncertainty was derived using the 
difference between the upper and lower 
limits of the 90% prediction interval of all 
50 predictions. The legend colour for CEC 
identify low values in blue while yellow, 
pink, and white gradients indicate a positive 
progression in the values for CEC. The 
legend colours for the uncertainty map 
identifies low values in yellow while green 
and blue gradients indicate a progressive 
increase in values of uncertainty.   
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D.5. Digital soil maps – pH 

See Fig. D.5. 

Fig. D.5. pH for each of the six GlobalSoilMap 
standard depths and the associated uncertainty for 
each of the six GlobalSoilMap standard depths. 
Deterministic predictions were achieved using the 
super-ensemble with bias correction. Uncertainty 
was derived using the difference between the upper 
and lower limits of the 90% prediction interval of all 
50 predictions. The legend colour ramp for pH 
identifies low values in blue while yellow, pink, and 
white gradients indicate a positive progression in the 
values of pH. The legend colour for the uncertainty 
map identifies low values in yellow while green and 
blue gradients indicate a progressive increase in 
values of uncertainty.   
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D.6. Digital soil maps – OC (g/kg) 

See Fig. D.6. 

Fig. D.6. Organic carbon for each of the six 
GlobalSoilMap standard depths and the 
associated uncertainty for each of the six 
GlobalSoilMap standard depths. Determin
istic predictions were achieved using the 
super-ensemble with bias correction. Un
certainty was derived using the difference 
between the upper and lower limits of the 
90% prediction interval of all 50 pre
dictions. The legend colour ramp used for 
OC identifies low values in blue while yel
low, pink, and white gradients indicate a 
positive progression of values for OC. The 
legend colour ramp for the uncertainty map 
identifies low values in yellow while green 
and blue gradients indicate a progressive 
increase in values of uncertainty.   
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Appendix E. Supplementary data 

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.geoderma.2021.115153. 
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criteria suitable for evaluating low-flow simulations. Journal of Hydrology. https:// 
doi.org/10.1016/j.jhydrol.2011.11.055. 

Randin, C.F., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., 
Vittoz, P., Thuiller, W., Guisan, A., 2009. Climate change and plant distribution: 
local models predict high-elevation persistence. Global Change Biology 15, 
1557–1569. https://doi.org/10.1111/j.1365-2486.2008.01766.x. 

Rasaei, Z., Bogaert, P., 2019. Spatial filtering and Bayesian data fusion for mapping soil 
properties: A case study combining legacy and remotely sensed data in Iran. 
Geoderma 344, 50–62. https://doi.org/10.1016/j.geoderma.2019.02.031. DOI: 
10.1016/j.geoderma.2019.02.031. 
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