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A B S T R A C T

Tree mortality is an important forest ecosystem variable having uses in many applications such as forest health
assessment, modelling stand dynamics and productivity, or planning wood harvesting operations. Because tree
mortality is a spatially and temporally erratic process, rates and spatial patterns of tree mortality are difficult to
estimate with traditional inventory methods. Remote sensing imagery has the potential to detect tree mortality
at spatial scales required for accurately characterizing this process (e.g., landscape, region). Many efforts have
been made in this sense, mostly using pixel- or object-based methods. In this study, we explored the potential of
deep Convolutional Neural Networks (CNNs) to detect and map tree health status and functional type over entire
regions. To do this, we built a database of around 290,000 photo-interpreted trees that served to extract and
label image windows from 20 cm-resolution digital aerial images, for use in CNN training and evaluation. In this
process, we also evaluated the effect of window size and spectral channel selection on classification accuracy,
and we assessed if multiple realizations of a CNN, generated using different weight initializations, can be ag-
gregated to provide more robust predictions. Finally, we extended our model with 5 additional classes to account
for the diversity of landcovers found in our study area. When predicting tree health status only (live or dead), we
obtained test accuracies of up to 94%, and up to 86% when predicting functional type only (broadleaf or nee-
dleleaf). Channel selection had a limited impact on overall classification accuracy, while window size increased
the ability of the CNNs to predict plant functional type. The aggregation of multiple realizations of a CNN
allowed us to avoid the selection of suboptimal models and help to remove much of the speckle effect when
predicting on new aerial images. Test accuracies of plant functional type and health status were not affected in
the extended model and were all above 95% for the 5 extra classes. Our results demonstrate the robustness of the
CNN for between-scene variations in aerial photography and also suggest that this approach can be applied at
operational level to map tree mortality across extensive territories.

1. Introduction

Tree mortality is an important ecological process playing a critical
role in determining the structure, composition and productivity of
forest ecosystems (Caspersen et al., 2011; Franklin et al., 1987). Tree
death results from a range of biophysical, climatic or anthropogenic
factors which, alone or in combination, can contribute to killing a tree.
Under typical conditions, tree mortality will occur mostly as quasi-
random events in which dead trees will be found isolated and diffused
across the landscape (Larson et al., 2015; Hurst et al., 2012). Under
more intense environmental constraints (e.g. fires, insect, drought), tree
mortality may increase above background levels and start to exhibit
more structured patterns in which dead trees are found in isolated or
extensive patches scattered across the land (Clyatt et al., 2016). In all

cases, the assessment of tree mortality over large areas (regions, land-
scape) is a difficult task, yet it is required in order to improve our un-
derstanding of this important ecological process and, ultimately, to
improve sustainable forest management practices.

Traditionally, the assessment of tree mortality has been mostly
limited to field and aerial survey approaches. In field surveying
methods, the proportion of dead trees is usually derived from random
sampling of plots within which live and dead trees are recorded.
Mortality estimates are then reported at the plot level, or aggregated at
larger spatial levels (e.g. stand, ecoregion). The level of representativity
of mortality estimates from this type of approach depends on the design
and intensity of field sampling. In most field measurements campaign,
the dimensions of the sampling unit is small (< 1 ha) and the number of
replicates is not suitable for obtaining a systematic portrait of the
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spatial distribution of mortality over the sampling domain.
Furthermore, in field measurements the spatial coordinates of trees
(live and dead) is seldom recorded, preventing detailed studies of tree
mortality spatial patterns or of spatial correlations with environmental
variables. Aerial survey approaches, on the other hand, allow to obtain
a spatially-continuous portrait of tree mortality over large areas, po-
tentially providing useful information on the mechanisms involved in
tree mortality (Breshears et al., 2009). Aerial photo interpretation (API)
is a method that is well-suited to obtain individual tree attributes and
coordinates. However, API is a resource-consuming approach, which
prohibits its application at regional and continental levels.

To overcome the limitations of field and aerial surveying methods,
previous studies have combined field and remote sensing observations
to detect tree mortality and assess its spatial distribution. For example,
the use of high spatial resolution multispectral imagery for detecting
dead trees has been the focus of many recent studies (Kellner and
Hubbell, 2017; Larson et al., 2015; Van Gunst et al., 2016; Wang et al.,
2016). Despite all the progress made in the detection and assessment of
tree mortality, there still exists no operational method that rely solely
on remote sensing data to detect and map tree mortality over large
regions (e.g. 100–1000 km2) (Latifi et al., 2018) The absence of such
methods can be partly explained by the large between-scene variations
(e.g., due to differences in acquisition periods, atmospheric conditions,
etc.) inherent to large datasets of remote sensing scenes required to map
extensive territories (Gueguen and Hamid, 2015). Furthermore, most
standard classification methods assume that image pixels follow well-
defined statistical distributions; this is rarely true in practice (Olson,
2009; Olson and Ma, 1989).

Deep convolutional neural networks (CNNs) are deep learning
models which have achieved unprecedented performance in object re-
cognition and classification tasks, with applications in fields such as
medicine, self-driving cars, image search, or mapping. The great per-
formance of CNNs is due to their ability to enhance the shape, texture
and spatial relationships present in images, and to use that information
to detect generic structures in new images (Szegedy et al., 2014;
Simonyan and Zisserman, 2015; He et al., 2015; Huang et al., 2016;
Russakovsky et al., 2015; Zoph et al., 2017). This capacity results
mainly from the application of sequential convolutional filters that
extract general and local image patterns. Extracted patterns (features)
are used to condition a neural network that is trained to associate
learned features with the properties of target classes (Simonyan and
Zisserman, 2015; Szegedy et al., 2014). Recent work demonstrated that
accuracy levels achieved by CNNs far exceed those achieved by tradi-
tional classification methods (Audebert et al., 2018; Chen et al., 2018;
Marmanis et al., 2016). Therefore, the use of CNNs could provide a
reliable and objective way to assess tree mortality over extensive ter-
ritories. Moreover, the combination of API and CNNs would improve
the efficiency and reproducibility of API projects, which in turn would
enhance our ability to quantify tree mortality and monitor it over time.

The fitting procedure of a neural network involves the introduction
of a stochastic component during weight initialization. This stochastic
component may lead to different final weights and affect the classifi-
cation from one iteration of a model to another (Kourentzes and
Petropoulos, 2016; Marmanis et al., 2016) Few studies in machine
learning studied the effect of this stochastic component on CNN accu-
racy although it may alter prediction stability and accuracy. To over-
come this limitation and improve the accuracy and robustness of model
predictions, it has been proposed to use ensemble learning, an approach
by which a neural network is trained multiple times to generate mul-
tiple predictions (one from each trained model) for a given observation.
The resulting predictions are then aggregated to provide a deterministic
estimation of the real values (e.g. probabilities), thereby reducing the
uncertainty associated with the stochastic component of the neural
network (Kourentzes and Petropoulos, 2016; Brochero et al., 2015;
Marmanis et al., 2016). Such an approach would also lead to better
assessment of the uncertainty in the predictions; e.g. regions showing

low adequation between predictions from different iterations of a
model would be interpreted as more uncertain.

In this study, we aimed to evaluate the potential of CNNs to obtain a
spatially-continuous pixel based coverage of forest trees functional type
(broadleaf, needleleaf) and health status (dead, live) using high-re-
solution digital aerial photography acquired under a broad range of
acquisition conditions (e.g. illumination, topography). To achieve this
goal, we 1) built a CNN based on a compact version of the VGG model
architecture and used it to predict tree health status (live, dead) and
functional type (broadleaf/needleleaf) using multispectral orthoimages,
2) evaluated how window size and spectral channels combinations af-
fect prediction accuracy, and 3) assessed the effect of the stochastic
component of CNNs on prediction accuracy. Finally, we extended our 4-
class model (live needleleaf, live broadleaf, dead needleleaf, dead
broadleaf) to include 5 more land cover classes (water, road, wetland,
timber harvest, building) and we applied it to a mosaic of 43 aerial
orthoimages to assess the ability of the CNN to correctly classify pixels
from images acquired under a range of acquisition conditions.

2. Data and methods

2.1. Study area

2.1.1. Vegetation type
The study area is located in the south-central part of the Province of

Quebec, Canada, and encompasses three vegetation sub-zones: the
temperate deciduous, the mixed-wood and the boreal forests (Fig. 1).
Temperate deciduous forests are mostly located in the southern part of
the study area and are characterized by the presence of tree species
such as sugar maple (Acer sacharrum (Marsh.)), yellow birch (Betula
alleghaniensis (Britt.)), and trembling aspen (Populus tremuloides
Michx.)). The mixed forest mostly cover the central part of the area and
are dominated by mixed stands composed, for the most part, of balsam
fir (Abies balasamea (L.) Mill), white birch (Betula papyrifera (Marsh.))
and trembling aspen. Boreal forests occupy the northern part of the
study area and are dominated by black spruce (Picea mariana (Mill.)),
jack pine (Pinus banksiana (Lamb.)) and white birch. The study area was
selected because of 1) its diversity in forest structural attributes, which
results mostly from forest management activities, and 2) the occurrence
of important tree species for the Quebec forest industry.

2.2. Orthoimages

2.2.1. Acquisition and metadata
We used a set of 990 very high resolution multispectral digital aerial

photos acquired over the study area between July 2, 2007 and August
21, 2007. This type of imagery is routinely acquired by the Government
of Quebec for forest mapping and planning purposes. Aerial photos
were acquired with a Vexcel UltraCamD large format aerial camera
designed for co-located acquisition of panchromatic and multispectral
images. For our analyses, we used digital count values (8 bits) in the
four spectral channels (red (R), green (G), blue (B), near-infrared (I)),
that were pan-sharpened and stacked into multi-channel, 20-cm pixel
resolution GeoTiff images. Finally, we used interior and exterior camera
parameters provided by the image supplier, a triangulated irregular
network (TIN) elevation dataset and the Summit Evolution photo-
grammetric workstation to create multispectral RGBI orthoimages.

2.3. Tree database

2.3.1. Labelled-images
Orthoimages were used as the main data source for building a da-

tabase of labelled-trees, to be used for calibration and validation of the
CNNs. We started by randomly selecting 315 undisturbed forest poly-
gons from a set of candidate polygons distributed over the study area.
Candidate polygons were extracted from the 2007 1:20 k Quebec forest
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map (Direction des inventaires forestiers, 2009) using the following
criteria: years since last disturbance (> 25), stand age class (> 30 years
old), and forest cover type (coniferous, mixed, deciduous). For each
selected polygon, we defined a 1-ha square area (100 m × 100 m)
around its centroid, thus defining boundaries for image interpretation.
Using 3D stereo rendering, a senior photointerpreter characterized all
trees taller than 7 m and located within the 1-ha polygons. Each tree
was characterized in terms of the following attributes: plant functional
type (PFT: broadleaf, needleleaf), health status (HS: dead, live), and
location (X and Y coordinates) (Fig. 2). Tree locations were represented
by the crown center of mass. Slight differences could occur between a
point coordinates and its tree true center of mass. In our study, this was
not considered critical since the data augmentation scheme we used at a
later step (Section 2.4) applied random translations to the tree co-
ordinates. In fact, in our case the use of translations resulted in in-
creased prediction accuracies. Defoliated trees were classified into live
or dead trees according to a 50% defoliation threshold, meaning that
trees with a percentage of crown defoliation greater than or equal to
50% were labelled as dead. Since highly defoliated trees are spectrally
very similar to dead trees, we defined that a 50% defoliation threshold
was representative of dead forest cover. All along the photo-inter-
pretation process, an independent photo-interpreter with 15 years of
professional experience randomly selected 10% of the 1-ha polygons for
quality checking. Verified polygons in which the proportion of trees
with errors (localization, plant functional type, health status, and de-
foliation level) exceeded 5% were sent back for corrections.

The interpretation of all images resulted in a database of more than
290,000 georeferenced trees, each labelled with one of 4 classes: live
broadleaf (LB), dead broadleaf (DB), live needleleaf (LN), and dead
needleaf (DN) (Table 1). Finally, for each tree in the database we ex-
tracted image values in the four spectral channels using a two dimen-
sional window (patch) centered around the tree spatial coordinates
(Fig. 3). The resulting patches, which we refer to as “labelled-images” in
this paper, were used as inputs for trainining and testing the CNNs.
Labelled-image dimensions varied depending on the tested model
configuration (see Sensitivity Analyses section below).

2.3.2. Extension of the base model to 9 classes
To increase the potential use of our CNNs (e.g. by forest planners),

we added 5 land cover classes to the training dataset: wetland, timber
harvest, water, road and building. These classes were chosen because
they represent, altogether, the majority of land cover classes found in
the study area. Training samples for these classes were created by first
selecting, from the same forest map that we used for building the tree
database, any polygon labelled as one of our 5 land use classes. In a
second step, we visually inspected all extracted polygons by overlaying
them over the aerial photos and evaluating if their image content was
representative of its associated land cover class. When required, we
edited polygon geometries to maximize their spatial and spectral
homogeneity. The edition of polygon geometries also aims at removing
geometrical alignment errors and help increasing the representative-
ness of the elements associated with each land use class. Wetland
polygons were manually edited to keep only open areas that were easily
distinguishable from adjacent forest cover. Roads and water features
were edited in the database using SQL queries. For road segments, we
first applied a 5-m buffer that converted linear features into polygons,
from which we manually removed all regions covered by vegetation.
For timber harvest (e.g. clear-cut), we retained only polygons in which
harvest occurred at most 4 years prior to image acquisition. Surface
water bodies were shrunk using a 10-m interior buffer to remove po-
tential bordering vegetation or beaches. Buildings were all manually
positioned using aerial photography. The edition of polyon geometries
aimed at removing geometrical alignment errors and also at increasing
the representativeness of the end-member for each land cover. Finally,
we generated randomly distributed points across all polygons and we
sampled 20,000 points for each land use class. Using the same approach
used for trees, we extracted image values from RGBI multispectral
channels using two-dimensional windows centered around the class
points. These additional labelled-images (20,000 × 5
classes = 100,000 labelled-images) were merged with tree labelled-
images to create an extended database that we used to train the 9-class
model (VGG16S-RGBI-41px-9cl).

Fig. 1. Map of the study area. Black squares show the locations of 1-ha polygons used for photo-interpretation of tree positions (x, y), functional type (needleleaf,
broadleaf) and heath status (live, dead).
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2.4. Data preprocessing

2.4.1. Data splitting
The labelled-images database was split into calibration (60%), va-

lidation (10%) and test (30%) datasets. The calibration dataset was
used to train the model. To avoid overfitting and assess the expected
prediction error, we used the validation dataset to track model per-
formance during the training process. The test dataset, which is com-
pletely independent from the calibration process, was used to assess the
generalization error of the model. The assessment of performance on an
independent dataset is extremely important in practice, as it provides a

measure of the quality of the expected predictions on a dataset that was
never previously seen by the model. We then assessed the optimism of
the final model by calculating the difference between expected and
generalization errors (Hastie et al., 2009).

2.4.2. Spatial constraints
The validation and test datasets were created by randomly sampling

an equal amount of labelled-images in each class. To avoid overfitting
and ensure a good assessment of the generalisation error, we imposed a
spatial constraint that eliminated from the calibration dataset any tree
that was located within 8 m of a tree contained in the validation or test
datasets. The 8 m distance is required to ensure independence between
train and validation samples. we removed from the training dataset all
labelled-images that overlapped 5% or more of a validation or test
window. The minimal distance used to subset validation and test da-
taset ensured that a labelled-image used for training the CNN could not
have more than 5% of its area occupied by pixels from a validation or
test labelled-image. To guarantee a 0% overlap would have required a
45% increase in the minimum distance between trees, which would
have led to losing many additional training samples, including some in
the minority classes. This operation resulted in a 4% decrease in the
number of labelled-images from the minority class (DN) in the cali-
bration dataset.

Fig. 2. Example of a 1-ha square polygon (black contour line) showing the spatial distribution of tree functional type and health status classes (represented by
symbols and colors, respectively) overlayed on a true color (RGB) high-resolution orthoimage. These points were used to extract RGBI count values from orthoimages
and to train the CNNs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Number of trees in the original database, by health status and plant functional
type. Numbers in parentheses represent the proportion of database records la-
belled with a given combination of plant functional type and health status
classes.

Health Status

Plant Functional Type Live Dead TotalPFT

Broadleaf 73,356 (0.25) 1039 (< 0.01) 73,795
Needleaf 218,190 (0.74) 3561 (0.01) 218,279
TotalHS 287,474 4600 292,074
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2.4.3. Undersampling
The resulting calibration dataset was largely dominated by trees

from the LN (170,278) and LB (63,422) classes (versus dead tree
classes, DN (2672) and DB (850)), which resulted in an extremely large
class imbalance. In our study, the small number of samples from min-
ority classes resulted from the zero-inflated distribution of highly de-
foliated and dead trees, whose occurrences are considered as rare
events outside of catastrophic events such as insect outbreaks or large-
scale diseases (Franklin et al., 1987). To obtain a balanced dataset,
Buda et al. (2017) recommend oversampling minority classes until they
meet the number of samples from the majority class. In this study,
oversampling would have led to an important duplication of dead trees
and to an increase in computation time during training. For these
reasons, we chose instead to undersample the number of calibration
labelled-images from LN and LB classes to 40,000 using random se-
lection. To avoid the effect of a large class imbalance on performance
assessment, we also randomly undersampled all but the minority class
of the validation and test datasets so that they equalled the number of
samples from the minority classes (i.e. =DB 85val and =DB 255test ).

2.4.4. Data augmentation
Due to the heterogeneous spatial distribution of tree mortality and,

to a lesser extent, to our sampling plan, the number of labelled-images
from dead tree classes (DN, DB) in our database was limited compared
to live tree classes. Class imbalances can result in predictions that are
biased toward majority classes and also lead to poor generalization of
the models. In our case, this could have led to reduced proportions of
dead forest cover when applying the CNN over large areas. To increase
the ability of our CNNs to recognize dead forest cover in new images,
we performed data augmentation on our training dataset (Krizhevsky
et al., 2012). Data augmentation was realized by randomly applying the
following transformations on labelled-images from the undersampled
classes (LB, DN, DB): shift by 0.4 meters horizontally (left or right) or
vertically (up or down), flip (horizontal or vertical) or rotation ( °90
increments), or a combination of any two transformations from this list.
In total, these transformations yielded to a potential of 12 unique
samples per labelled-image. Transformations were applied to the un-
dersampled classes by randomly selecting a labelled-image and ap-
plying a (combination of) transformation until the number of images
from the target class reached 40,272. It is important to note that data
augmentation was applied only to labelled-images from the calibration
dataset; validation and test datasets comprised only original samples.

2.4.5. Normalisation
Finally, we standardized pixel values in all labelled-images by

subtracting the calibration dataset mean and dividing by its standard
deviation. The final calibration, validation and test datasets contained
161,088, 340 and 1020 labelled-images, respectively.

2.5. CNN Configuration

2.5.1. CNN structure
Standard CNNs use stacks of convolutional and max-pooling layers

as an image feature extractor. Extracted features, which take into ac-
count the spatial context of an image object, are then usually used as
inputs to a fully-connected neural network for classification. VGG
(Visual Geometry Group, Oxford University, Simonyan and Zisserman
(2015)) is a model architecture that has won 2nd place at the 2014
ImageNet Large Scale Visual Recognition Competition (ILSVR). Today,
VGG is still considered a state-of-the-art CNN image feature extractor,
although it was recently outperformed by other models such as Goo-
gleNet (Szegedy et al., 2014), ResNet (Wu et al., 2015), DenseNet
(Huang et al., 2016), and SENet (Hu et al., 2017). In this study, we used
a simplified version of VGG with 16 layers (VGG16) because it is more
adapted to small objects and it has shown great performance for the
detection of small objects or part of object such as trees (Simonyan and
Zisserman, 2015)). Preliminary analyses (not shown) using a trimmed
down version of VGG16 (Table 2) allowed us to drop the last 2 conv-
maxpool filter blocks without affecting prediction accuracy. This

Fig. 3. Examples of 41 × 41-pixel labelled-images. True (RGB) and false (IRG)
color images are shown on the left and right hand side panels, respectively.
Each row shows images for one of the base model 4 classes: live needleleaf (LN,
a-b), dead needleleaf (DN, c-d), live broadleaf (LB, e-f), and dead broadleaf (DB,
g-h).

Table 2
Comparison between VGG16 and VGG16S architectures.

Step Number of layers VGG16 VGG16S

2 Conv64 Conv32
1 Maxpool Maxpool
2 Conv128 Conv64
1 Maxpool Maxpool
3 Conv256 Conv128

Extraction 1 Maxpool Maxpool
3 Conv512
1 Maxpool
3 Conv512
1 Maxpool

1 Flatten Flatten
Classification 2 Dense 4096 Dense 512

1 Dense (softmax) Dense (softmax)
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modification reduced by half the number of convolutional filters and
reduced the number of neurons in the final classifier by a quarter. These
modifications resulted in a simplified model which had 22 times fewer
trainable parameters than the original VGG16, which significantly de-
creased GPU time. This simplified configuration, named VGG16S, is the
model that we used in subsequent analyses.

2.5.2. CNN initialization
For model training, we used constant values for the hyperpara-

meters defined in the previous section and we used VGG16 standard
values for the other model parameters: dropout was set to 0.5 and L2
penalty multiplier to 5e-4. We initialized all weights using a Glorot
uniform distribution (Glorot and Bengio, 2010) and we set the initial
biases to zero. We used stochastic gradient descent (SGD) with Nesterov
momentum of 0.9 to optimize the parameters. Apart from the last dense
layer which used a softmax activation, all other layers in the model
used the Rectified Linear Unit (relu) activation function. The total
number of labelled-images used to train the model at each update (i.e.
batch size) was set to 256. We used a time-based learning rate (lr) decay
function, with lr initially set at 1e-3 and updated at each iteration ac-
cording to the following formula, where 150 is the maximum number of
epochs and iteration is the elapsed number of mini-batches (from 1 to a
maximum of 38,400:

=
+

lrate iteration lr
lr

( ) 1
1 ( )iteration

150

2.5.3. Training and early stopping
We provided a maximum of 150 epochs for the algorithm to con-

verge. In most cases, the model converged within about 100 epochs,
amounting to a few hours of GPU usage per trained model. The limit of
150 epochs was never reached during model training. To avoid over-
fitting, the model was trained using an early stopping approach in
which the training was stopped when the validation loss didn’t decrease
for 20 consecutive epochs and the final weights were those that pro-
vided the best overall validation accuracy. We did not apply any batch
normalization (Ioffe and Szegedy, 2015) during the training process as
we found it only increased training compute time with no significant
gain in performance evaluation metrics.

2.6. Ensemble predictions

2.6.1. Deterministic prediction and uncertainty assessment
We hypothesized that ensemble predictions can be used to reduce

some of the variability in CNN outputs that results from the stochastic
component of CNNs. To evaluate the potential of ensemble predictions
for increasing stability in model outputs, we trained each CNN 10 times
for each combination of the studied parameters (2 window sizes × 3
band combinations = 6 CNNs. See next section). For each iteration of a
CNN configuration, the model was initialized using a different random
seed, which resulted in a modification of node weights initial values
and, consequently, in differences in the final model. Each model
iteration was then used to make predictions on the test dataset. Pixel-
wise predictions from the 10 iterations were then aggregated using the
modal class, i.e. the class with the highest frequency among the 10
predictions. As well as providing greater stability in CNN predictions,
we also believe that ensemble predictions can be used to characterize
the level of spatial uncertainty associated with predictions of specific
classes and use this information to identify, for example, which type of
mortality (e.g., broadleaf vs. deciduous trees, spatial patterns) is more
hardly recognized by the model.

2.7. Sensitivity analyses

2.7.1. Window size
We studied the effect window size and spectral channel selection on

CNN predictive accuracy. Window size defines the width and height of
labelled-images, in number of pixels. Based on preliminary analyses
using different window sizes (not shown), we selected the two sizes that
were best adapted to the average crown diameter and area of needleleaf
(4.2 m, 13.8 m2) and broadleaf (8.2 m, 52.8 m2) trees in the database:
21 × 21 (21px) and 41 × 41 (41px) pixels, respectively.

2.7.2. Availability of spectral channels
The choice and number of spectral channels available as model in-

puts depend on the camera used for the aerial survey, and this is likely
to have an effect on model performance. To assess the magnitude of
these effects on CNN predictions, we used different channel combina-
tions as inputs to the CNNs and compared their respective predictive
performance. We used two channel combinations that are commonly
used in remote sensing-based forestry applications: true-color (RGB)
and false-color (IRG) images. We also used a combination that included
all 4 image channels (RGBI).

2.8. Performance assessment

The effect of parameter values (window size, channels) on model
performance was assessed by comparative analyses of the global ac-
curacy and of omission and commission errors. Global accuracy is a
measure of the overall ability of the model and is defined as the number
of accurate predictions relative to the total number of predictions made
by the model. The omission error measures how often pixels from a
given class were left out (omitted) in the classification (i.e. they were
classified as other things than the class to which they belonged).
Omission error is calculated as the ratio, for a given class, of the number
of incorrect predictions to the total number of observations for that
class. Conversely, the commission error measures how often, among all
predictions made for a given class, these predictions were actually
wrong. It is calculated as the ratio of the number of inaccurate pre-
dictions of a given class to the total number of times that class was
predicted by the model. For the 4-class base model, we compared the
performance of the CNNs globally but also when predicting HS alone,
PFT alone, or all 4 combinations of HS and PFT (PFT + HS). The per-
formance of the 9-class model was evaluated globally and for each
class. All performance metrics were calculated from confusion matrices
derived from predictions on the test dataset.

2.9. Inference

2.9.1. Dead forest cover mapping
To assess the effect of between-image variations due to differences

in image acquisition conditions, we made predictions on a mosaic of 43
images (32 km2) using the best model configuration as determined by
sensitivity analyses. Images in the mosaic were acquired between
8:30AM and 6PM over the period from July 23 to July 26, 2007. During
that period at that location (mosaic centered at 48.9 N, 74.6 W), sun
zenith and azimuth angles varied between 30 and 105, and between
190 and 228 degrees, respectively. Dead forest cover maps were created
using the sliding-window method to infer model classes on new or-
thoimages. This method extracts values in the new orthoimage at every
N pixels, where each Nth pixel becomes the center of an small image to
be classified by the CNN. In this study, we used a N value of 5 pixels,
which resulted in 1-m resolution prediction maps.

2.9.2. Hardware and software
All CNNs and experiments in this study were implemented in the

Python 3.5 language, using Tensorflow 1.4 (Martin et al., 2015) and
Keras 2.1 (Chollet and Others, 2015). All our models were ran on a PC
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workstation equipped with a MSI Z270-A PRO motherboard, Intel Core
i5-7600 CPU, 16 GB DDR4 memory and a Nvidia GTX1060 6 GB gra-
phics card.

3. Results

3.1. Effect of the stochastic component of CNNs on model stability and
performance

Fig. 4 presents the distribution of global accuracies achieved by 10
different weight initializations. Independently of model configuration
and performance metrics, predictions of HS always resulted in accuracy
values that were 8% to 23% higher than values obtained when pre-
dicting PFT (0.77–0.84) and PFT + HS (0.72–0.80) (Fig. 4). The dis-
tributions of accuracy values for PFT and PFT + HS also suggest higher
uncertainties compared to HS predictions, as represented by their larger
variances in accuracy values. This suggests that models showing lower
performance are subject to greater levels of uncertainty in their pre-
dictions. In all model configurations but VGG16S-RGBI-21px, the per-
formance of modal values outperformed the model iteration that
showed the best validation accuracy during training (diamond symbol
in Fig. 4). By training multiple CNNs with their own weight initializa-
tion values and using pixel-wise modal classes, we increased prediction
accuracy and reduced the chance of reaching a local minimum during
the training steps, thereby increasing the confidence in the classifica-
tion. These results are in line with results from Kourentzes and
Petropoulos (2016), Marmanis et al. (2016), who demonstrated that
ensemble forecasts are more robust to misclassification. In addition,
ensemble predictions also allow to map the agreement between itera-
tions of a model, which can then be used as a tool to assess the level of
uncertainty at the pixel level (Fig. 8b).

3.2. Base model performance

Table 3 shows accuracy values for predictions of PFT, HS and
PFT + HS classes, for both validation and test dataset. Accuracy values

were calculated using pixel-level modal predictions from the 10 model
iterations presented in the previous section. Model performance was
always higher on the validation dataset. However, the small differences
between validation and test datasets (< 1%) suggest that our training
process did not overfit our training dataset, and by extension, that the
classification accuracy and the expected errors obtained from the va-
lidation dataset can be generalized on new datasets. When looking at
performance on the test dataset only, CNN accuracies ranged from good
(76%) to very good (95%) depending on the prediction type. The pre-
dictive performance for HS was systematically higher than for PFT or
PFT + HS classes and this, regardless of the values of the configuration
parameters (i.e. window size or spectral bands). Global accuracy of the
best model for HS (VGG16S-RGBI-41px) was 12% and 16% higher than
the accuracy achieved for PFT (83%) and PFT + HS (79%) for the same
model, respectively.

Fig. 4. Global accuracy values
achieved on the test dataset, for each
model configuration and prediction
type. Each row shows a different model
configuration. Prediction types are re-
presented by different colors: red
(plant functional type, PFT), green
(health status, HS) and blue (4-class
predictions, PFT + HS). Light-colored
circles represent the accuracy values
for 9 out of 10 model runs, each in-
itiated with different seed value be-
tween 1 and 10. For each model con-
figuration and prediction type, the
dark diamond represents the model
iteration that performed best on the
validation dataset whereas the dark
square represents the accuracy value
derived from the confusion matrix of
aggregated (modal) predictions. (For
interpretation of the references to
colour in this figure legend, the reader
is referred to the web version of this
article.)

Table 3
Global accuracy values calculated from predictions on the test and validation
datasets, for each model configuration and prediction type. Values were cal-
culated using aggregated predictions (pixel-wise modal class) from 10 model
iterations.

PFT HS +PFT HS

Val Test Val Test Val Test

=w px41
RGBI 85.0 83.4 94.7 94.5 80.6 79.4
RGB 84.1 83.0 94.7 94.6 80.0 79.1
IRG 84.4 82.2 93.2 93.8 78.8 77.7

=w px21
RGBI 83.2 81.7 94.7 94.2 79.4 77.4
RGB 84.1 81.2 94.4 93.5 80.6 76.5
IRG 82.4 81.1 94.1 93.1 78.2 76.1
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3.3. Window size

The larger window size increased the ability of the CNNs to predict
PFT (83% vs. 81% for 21px) and PFT + HS (79% vs. 77%) classes, but
did not have much effect on HS classification (95% vs. 94%). It pro-
vided accuracy values equal to or higher than those from predictions by
models that used the 21-pixel window, for all prediction types and
channel combinations. These differences in accuracy suggest that, when
using a smaller window size, CNNs cannot see the entire surface of tree
crowns or do not see enough contextual information around the trees.
The effect of window size may also be related to the minimum image
size required by the CNN architecture which contains 3 maxpooling
layers. Consequently, we recommend that, for similar applications, the
window size used to extract labelled-images should be defined based on
the dimensions of the largest target objects and the number of max-
pooling layer. Window size should be chosen as to capture not only the
full extent of the target object but also its spatial context. Window size
also seemed to result in a decreased of the commission errors for pre-
dictions of dead tree classes (Fig. 5). By increasing the window size, we
also increase the amount of spatial context used for making predictions.
In our analysis, this led to decreases in commission errors for all classes.
The dimensions and particular shape of deciduous trees required a
greater window size than for needleleaf trees, as seen in the Fig. 3.
Conversely, the overall effect of window size on the omission error
seemed to be smaller than on commission errors, regardless of the class
predicted and channel selection (Fig. 5).

3.4. Channel selection

Interestingly, the selection of spectral channels seemed to have a
limited effect on global accuracies achieved by the different CNNs.
Predictions were more accurate for configurations using RGBI and RGB
than for those using IRG channels. Although the availability of spectral
bands seemed to have a limited effect on global accuracy, the increase
spectral richness of RGBI helped improving predictions for the PFT
classes (Figs. 5 and 4) as well as decreasing variability in the predictions
from the different model iterations (Fig. 4). The additional spectral
richness provided by RGBI channels also helped to reduce ommission

and commission errors for all prediction types (Fig. 5), but its impact
was limited compared to that of the window size. Overall, although the
effect of window size on accuracy was greater than the choice of
spectral channels, the combination of the larger window with the four-
channel image provided the best predictions for all prediction types
(Fig. 4). Our results also show that, in our study, plant functional types
were much more difficult to predict than tree health status, regardless
of window size and channel selection.

3.5. Confusion matrix

Omission and commission errors calculated from the normalized
confusion matrix presented in Fig. 6 were mostly related to predictions
of PFT classes: 25% of DB pixels were classified as DN, 15% of LN pixels
as LB, 10% of LB as LN, and 10% of DN as DB. Omission (OE) and
commission (CE) errors associated with HS predictions were all under
5% except for DN/LN, that reach 7%. OEs and CEs associated with both
PFT and HS predictions (e.g., DB pixels classified as LN) were negligible
and varied between 0 and 1.5%. Overall, the live broadleaf class
showed the best classification performance, followed by the live nee-
dleleaf class (OE: 7%, CE14%) while the dead broadleaf class showed
the worst prediction successes (OE: 4%, CE: 35%).

3.6. CNN extended to 9 classes

Fig. 7 provides an overview of the accuracy of the 9-class model
(VGG16S-RGBI-41px-9cl). The 9-class model achieved a global accu-
racy of 90%. The additional classes were predicted with a high level of
accuracy, which varied between 95% and 98%. The introduction of new
classes had a minor impact on the global accuracy and, generally, in-
creased the ability of the model to predict all PFT + HS classes (DN
(79% to 85%), LB (87% to 91%) and DB (67% to 74%)) but LN (82% to
79%). Again, the omission and commission errors were mostly asso-
ciated with PFT classes: 15% of the LN pixels from the test dataset were
classified as LB, while 18% of DB pixels were classified as DN. Based on
the omission and commission errors derived from the matrix in Fig. 7,
the LB class was the most easily classified of the 4 tree classes in the 9-
class model (OE: 8%, CE: 19%), followed by LN (OE: 16%, CE: 19%),
DN (OE: 19%, CE: 16%) and DB (OE: 9% and CE: 31%).

3.7. Mapping dead forest cover

3.7.1. Landscape scale patterns: 4-class model
Fig. 8 presents the result of an ensemble prediction for a zone re-

presentative of the mixed forests in our study area. The map results

Fig. 5. Omission and commission errors (%) for each model configuration and
for predictions of the 4 classes (plant functional type (HS, 2 classes), health
status (HS, 2 classes)). Colored symbols show the omission and commission
errors for a the different model configurations. Symbols represent channel
combinations: circle = IRG, cross = RGB, and square = RGBI. Symbol sizes
represent window sizes: small = 21px, large = 41px. Colors represent pre-
dicted classes (PFT + HS): green = live needleleaf (LN),orange = dead nee-
dleleaf (DN), blue = live broadleaf (LB), and red = dead broadleaf (DB).
Omission and commission errors were calculated from the pixel-level ag-
gregation (modal class), for a given model configuration, of 10 predictions on
the test dataset (1 prediction = 1 of 10 iterations of a given configuration). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. Normalized confusion matrix for the aggregated (modal class) predic-
tions on test dataset using 4-class model VGG16S-RGBI-41px. Numbers indicate
the proportion of predictions for each combination of plant functional type and
health status classes. The sum of the matrix equals 100%. All classes were re-
presented by the same number of pixels (N = 255) in the test dataset.

J.-D. Sylvain, et al. ISPRS Journal of Photogrammetry and Remote Sensing 156 (2019) 14–26

21



from the pixel-wise aggregation (modal class) of predictions from 10
iterations of the VGG16S-RGBI-41px-9cl model applied to one ortho-
image of our dataset. The figure allows visual comparisons between the
original orthoimage (Fig. 8a), the level of agreement among classifiers
(Fig. 8b), the predicted classes for iteration 1 of the model (seed = 1)

(Fig. 8c), and the predicted classes from the ensemble predictions
(Fig. 8d.). The area delimited by the orthoimage is mainly dominated
by LN and LB pixels, and in less proportion by DB and DN pixels
(Fig. 8). The general pattern of PFT classes show that classifications
resulting from model iteration 1 and from ensemble predictions exhibit
similar patterns. Both classifications provided a detailed view of the
distribution of PFT + HS classes that is in agreement with the original
image. Nevertheless, the map derived from the ensemble predictions
shows a smoother spatial pattern and contains less speckles compared
to the map from iteration 1. Consequently, ensemble predictions de-
lineate more precisely the transitions between PFT + HS classes com-
pared to the classification from iteration 1. The uncertainty associated
with the speckle effect seems to be in accordance with the level of
agreement among classifiers; the agreement is lower (red to yellow
pixels) in the transition zone and in the areas dominated by broadleaf
trees (Fig. 8b). Conversely, the agreement is generally higher in the
needleleaf-dominated areas (yellow to blue pixels). These observations
are in line with the confusion matrix in Fig. 6, which shows greater
omission errors for broadleaf than for needleleaf pixels.

3.7.2. Stand level patterns: 4-class model
The upper right insets in panels of Fig. 8 highlight classification

results for a small region of interest within a forest stand. The inset in
panels a, c and d show that all dead trees were classified as such by the
model. Again, we see that, in predictions from the iteration 1 model,
many pixels at the edge of DN pixels were classified as broadleaf trees
(commission error). These errors are not present in the map from the
ensemble predictions (Fig. 8d). It is also interesting to note that some
predictions by iteration 1 of the model were later overturned by the
ensemble predictions: in the middle right section of the inset, one tree

Fig. 7. Confusion matrix for the pixel-level aggregated (modal class) predic-
tions made on the test dataset by the 9-class model (VGG16S-RGBI-41px-9cl).
Numbers indicate the proportion of predictions for each combination of plant
functional type, health status and land cover classes. The sum of the matrix
equals 100%. All classes were represented by the same number of pixels
(N = 255) in the test dataset.

Fig. 8. Prediction of plant functionnal type (PFT) and health status (HS) on an RGBI orthoimages using VGG16S-RGBI-41px. a) Original RGB orthoimage, b)
agreement among 10 classifiers, c) the predictions obtained using only one seed and 4) the predictions obtained using the aggregated value (modal value). In panel c
and d, the color describes the combination PFT + HS: live broadleaf (LB, blue), live needleleaf (LN, green), dead broadleaf (DB, red), dead needleleaf (DN, orange). In
panel b, the legend indicates the level of agreement among the 10 classifiers: red (low level, 0–50%), yellow (medium, 50–75%) and blue (high, 75–100%). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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that was classified as DB by the model from iteration 1 was later clas-
sified as DN by the ensemble approach. Fig. 8d also shows that most of
the shaded canopy pixels were classified as needleleaf pixels, which can
contribute to an overestimation of the number of needleleaf pixels in
images acquired under low solar zenith angles or in mountainous areas.
At the same time, based on visual examination of our image database,
shaded areas are more likely to occur in areas covered with needleleaf
trees than in those where the forest cover is mostly composed of de-
ciduous broadleaf trees. Finally, some of the confusion observed among

LN and LB classes in the confusion matrix could also be explained by
our prediction method: small objects have been smoothed and enlarged
by our prediction approach using the sliding window a 1-m intervals.

3.7.3. Landscape scale patterns: 9-class model
Fig. 9 depicts the results of applying the VGG16S-RGBI-41px-9cl

model on a mosaic of 43 orthoimages. The figure allows for a visual
comparison of the original orthoimages (Fig. 9a) with the map resulting
from applying iteration 1 of the model (Fig. 9b). The classification

Fig. 9. (a) Mosaic of RGB orthoimages and (b) predictions of plant functional type (PFT) and health status (HS) classes, plus 5 additional land cover classes on a
mosaic of 43 RGBI orthoimages. Predictions were made using iteration 1 of model VGG16S-RGBI-41px-9cl. Pixel colors in panel b represent: live broadleaf (LB, dark
blue), live needleleaf (LN, green), dead broadleaf (DB, orange), dead needleleaf (DN, red), water (light blue), wetland (cyan), timber harvest (clear-cut, etc) (purple),
road (yellow), and building (gray). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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achieved a good recognition of the areas dominated by LN (green) and
LB (dark blue) pixels, large timber harvest areas (purple), lakes (light
blue). The model was also able to recognize the occurrence of a wet-
lands (cyan) in the south central part of the area. The 9-class model is
well suited to detect spatial patterns of dead needleleaf tree cover (DN,
in red), as is seen in the lowerleft portion of the image and also near the
southern section of a lake located in the upperleft part of the image. The
model was also able to accurately delineate main and secondary roads
(yellow pixels). The model was almost unaffected by the differences in
image brightness levels, which are noticeable mostly in the north-
western part and in the southern central part of the orthoimage mosaic.
Transition lines are almost unperceptible in the classification, which
suggests that the CNN is less sensitive to changes in acquisition con-
ditions between the images; this represents a significant advantage of
CNNs compared to more traditional statistical approaches. These results
also imply that CNNs are more influenced by the information about the
spatial structure of the relative pixel values than by radiometric
changes of the absolute pixel values. This particular property will
provide greater robustness when processing many aerial orthoimages,
which are in general more subject to important changes in environ-
mental conditions during their acquisition.

4. Discussion

In this study, we demonstrated the potential of CNNs to map dead
forest cover composed of broadleaf and deciduous trees using digital
aerial photography acquired over a wide range of environmental con-
ditions. We demonstrated that 1) the effect of window size on predictive
accuracy is important Franklin et al. (2010) while 2) that of channel
combinations is limited. Window size should then at least include the
maximum size of the target and its full spatial context (Latifi et al.,
2018; Byer and Jin, 2017; Meng et al., 2016; Zhang et al., 2014; Coops
et al., 2006). In this context, higher spatial resolution imagery should
therefore be prioritized for the assessment of tree health status when
using CNN, as coarser resolution imagery will tend to smooth higher
frequencies used by the CNN (Dash et al., 2017; Meng et al., 2016;
Coops et al., 2006).

Our results also suggest that the aggregation of multiple predictions
lead to more robust and accurate forecasts, which in turn lead to a
better predictive accuracy (Kourentzes and Petropoulos, 2016;
Marmanis et al., 2016). The ensemble approach also offers the ad-
vantage of generating uncertainty maps, which allow to spatialize the
level of agreement among classifiers. In an operational context, un-
certainty maps can be used to identify patterns that are common to
misclassified labelled-images and thus help in refining the modelling
approach.

It is also important to recall that all models developed in this study
were trained and applied on aerial imagery digital numbers without
any radiometric correction applied. The good performances of the 4-
and 9-class CNNs suggest that this classification approach considers the
spatial relationships between pixel values as much as their absolute
values. This property makes CNNs less sensitive to changes in acquisi-
tion conditions between multiple scenes compared to traditional ap-
proaches, and will allow for their application on datasets having ex-
tensive spatial (mosaics) and temporal coverage (stacks). The visual
comparison between the mosaic of orthoimages and the map from the
9-class model demonstrated the capacity of CNNs to manage orthoi-
mages acquired under varying conditions (illumination and solar an-
gles).

In its actual form, our best CNN performed very well for classifying
a range of land cover, HS and PFT classes when compared to recent
literature (Byer and Jin, 2017; Dash et al., 2017; Wang et al., 2016).
However, the confusion matrices revealed relatively high rates of

omission and commission errors for predictions of PFT classes. Also, in
this study we limited the training dataset to a small number of land
cover classes; it would be relevant to integrate more land cover types to
increase the possible applications of the models to other territories
containing, for example, more rocks, bare soil, bryophytes, lichens,
ground, ericaceous, grasses, shrubs, crops, etc. Moreover, topographical
gradients, tree morphology (size, height, shape) and camera parameters
(spatial and spectral resolution) may introduce geometrical distortion
in the aerial imagery. The features associated with these distortions
may be limited in the dataset used for model training, as we used only a
limited set of observations for the minority classes, even when in-
cluding rotations, flips and translations. In future work, it would be well
advised to integrate more transformations in the preprocessing steps,
which may lead to a better characterization of the diversity en-
countered in aerial imagery acquired over different forest zones;
scaling, perspective transform and brightness values are possible ave-
nues to improve the training dataset. Consequently,these would also
increase the ability of the models developed in this study to achieve
similar accuracy levels on datasets acquired over a diversity of spatial
domains and acquisition periods. Alternative CNN-based approaches
(e.g., object-based CNN, semantic segmentation (FCN)) that could have
the potential to map dead forest cover in forested ecosystems should be
tested and compared based on their performance (Chen et al., 2018;
Anwer et al., 2018). Based on the results we obtained with ensemble
approach, we would also recommend to build a prediction model that
combined the output of multiple CNN-based model approaches.

5. Conclusion

We extended the application of CNNs to map dead forest cover in
deciduous, mixed and boreal forests using aerial photography. The
models we developed provide a robust approach for obtaining spatially
continuous forecasts of forests plant functional type and health status.
The global accuracies achieved by the best 4-class model was 96% for
the health status, 85% for plant functional type and 79% for the com-
bined classes of plant functional type and health status. We also de-
monstrated that it is possible to increase the robustness and stability of
CNN outputs by aggregating classes predicted using multiple model
iterations, and we showed how multiple predictions can be used to
derive uncertainty maps at landscape level.

Historically, tree mortality remained a process that has been poorly
characterized and understood. From an operational and research per-
spective, our work provides a new tool to map temporal changes in
plant functional type and health status at landscape to regional scales.
The maps resulting from these new developments will provide a precise
and accurate portrait of tree mortality at unprecedented spatial re-
solution (1 × 1 m). The spatial portrait derived using this approach will
provide a level of detail that will benefit to a better understanding of
the effect of abiotic and biotic factors on tree mortality. This informa-
tion will also provide important information about the structure,
composition and productivity of forest ecosystems. Decision makers
may also find many practical uses for these models, namely for forest
management and planning: delineation of forest stands, wetlands and
flooded zones, assessment of forest composition, planning salvage cuts
after wildfires or insect disturbances, etc. The application of our algo-
rithm on time series aerial imagery will provide the opportunity to
assess mortality rates over large territories. Cartographic products re-
sulting from this study will also support, in combination with multi-
source datasets, future research aimed at understanding the effects of
environmental conditions on forest dynamics and on tree mortality in
particular.
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Appendix A. Additional metrics

See Tables A1–A3.

Table A1
Recall values calculated from predictions on the test and validation datasets, for each model configuration and prediction type. Values were calculated using
aggregated predictions (pixel-wise modal class) from 10 model iterations. For PFT + HS, recall is defined as the average recall for all 4 classes. = +Recall 100%tp

tp fn .

PFT HS +PFT HS

Val Test Val Test Val Test

=w px41
RGBI 84.1 86.9 93.5 91.6 80.6 79.5
RGB 85.9 87.3 93.5 92.2 80.0 79.1
IRG 84.1 86.7 91.2 91.6 78.8 77.7

=w px21
RGBI 85.3 87.5 93.5 92.9 79.5 77.4
RGB 87.6 86.5 92.4 90.8 80.6 76.5
IRG 82.4 86.1 92.4 91.0 78.3 76.1

Table A2
Precision values calculated from predictions on the test and validation datasets, for each model configuration and prediction type. Values were calculated using
aggregated predictions (pixel-wise modal class) from 10 model iterations. For PFT + HS, precision is defined as the average precision for all 4 classes.

= +Precision 100%tp
tp fp .

PFT HS +PFT HS

Val Test Val Test Val Test

=w px41
RGBI 85.6 81.3 95.8 97.3 80.6 79.8
RGB 83.0 80.5 95.8 96.9 80.0 79.5
IRG 84.6 79.5 95.1 95.9 79.0 78.3

=w px21
RGBI 81.9 78.4 95.8 95.4 79.4 77.9
RGB 81.9 78.2 96.3 96.1 80.9 77.3
IRG 82.4 78.3 95.7 95.1 78.3 76.6

Table A3
F1 score values calculated from predictions on the test and validation datasets, for each model configuration and prediction type. Values were calculated using
aggregated predictions (pixel-wise modal class) from 10 model iterations. For PFT + HS, F1 score is defined as the average F1 score for all 4 classes.

= +F1 2 100%Precision Recall
Precision Recall .

PFT HS +PFT HS

Val Test Val Test Val Test

=w px41
RGBI 84.9 84.0 94.6 94.3 80.6 79.3
RGB 84.4 83.7 94.6 94.5 80.0 79.0
IRG 84.4 82.9 93.1 93.7 78.8 77.6

=w px21
RGBI 83.6 82.7 94.6 94.1 79.4 77.2
RGB 84.7 82.1 94.3 93.3 80.5 76.3
IRG 82.4 82.0 94.0 93.0 78.1 75.8
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