
Variation et choix des provenances de *Pinus contorta* en plantation sur plusieurs sites au Québec

par R. BEAUDOIN

Roger BEAUDOIN est ingénieur forestier, diplômé de l'Université Laval depuis 1970. En 1973, ce même établissement lui décernait le titre de maître ès sciences (Écologie forestière). À l'emploi du ministère des Terres et Forêts d'alors (aujourd'hui le MRN) à partir de 1973, il est affecté à la Recherche forestière à titre de chargé de recherches en amélioration génétique des pins des sections sylvestris et banksiana et il est responsable depuis 1985 du réseau d'arboretums du MRN et des secteurs spéciaux de R-D en amélioration génétique des arbres.

Les Mémoires et les autres rapports publiés par la Recherche forestière sont révisés par un comité ad hoc d'au moins trois membres recrutés aussi bien à l'intérieur du Ministère que dans le milieu universitaire, la fonction publique fédérale ou les autres milieux de la recherche. Les responsables de la Recherche remercient les scientifiques qui acceptent bénévolement de revoir les textes présentés dans cette série et de participer ainsi à la diffusion des résultats des recherches menées au ministère des Ressources naturelles du Québec ou avec son assistance.

Les publications de la Recherche forestière sont produites et diffusées à même les budgets de recherche et de développement, comme autant d'étapes essentielles à la réalisation de chaque projet ou expérience. En conséquence, ces documents sont, par définition, à *tirage limité* et à *diffusion restreinte*. Adresser toute demande à la :

Direction de la recherche forestière Ministère des Ressources naturelles du Québec 2700, rue Einstein SAINTE-FOY (Québec) Canada G1P 3W8

Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec
Variation et choix des provenances de <i>Pinus contorta</i> en plantation sur plusieurs sites au Québec

Différence entre la provenance 1005 (Colombie-Britannique), au centre, saine et la provenance 973 (côtière, Ataska), à gauche, affectée par une dessication hivernale prononcée et par le chancre Sclendems Gaspé, août 1991.

Variation et choix des provenances d	le <i>Pinus contorta</i> en plantation
sur plusieurs sites	s au Québec

par

Roger BEAUDOIN, ing.f., M.Sc.

Mémoire de recherche forestière n° 119

Gouvernement du Québec

Ministère des Ressources naturelles

Direction de la recherche forestière

1995

Ce texte est un rapport partiel du projet de recherche n° 0890-1250 (anc. 021250) : Tests de provenances sur le pin de Murray.

RN95-3092

ISSN 1183-3912 ISBN 2-550-25128-8 Dépôt légal 1995 Bibliothèque nationale du Québec Bibliothèque nationale du Canada © 1995 Gouvernement du Québec

Remerciements

L'auteur désire remercier sincèrement ses confrères de travail, MM. Gilles Vallée et Ante Stipanicic, qui ont fait les démarches nécessaires à l'acquisition des lots de graines, à la planification et à l'établissement des tests de provenances; les techniciens forestiers du Service de l'amélioration des arbres MM. Simon Barrette, Gaétan Numainville, Hervé Gagnon, Gaston Lapointe, Pierre Lortie et Guildo Gagnon qui ont procédé à l'implantation des tests de provenances et à la prise des données; Mmes Nathalie Boulanger, étudiante en statistique, et Carmelle Beaulieu, statisticienne, qui ont effectué le traitement des données et participé à l'interprétation des résultats des tests statistiques; les dessinateurs MM. Raymond Castonquay et Lévis Beaulieu, pour la présentation graphique des figures; MM. Fabien Caron, Gilles Vallée, Gaétan Daoust, Yves Lamontagne, André Rainville et Stéphan Mercier qui ont réalisé la révision du texte: M. Caron a aussi réalisé l'édition et la publication de ce mémoire; M. Yvan Auger, responsable du laboratoire de la Direction de la recherche forestière, pour la réalisation des analyses de sol; M. Denis Ferland, auxiliaire en informatique, qui m'a assisté dans l'établissement des statistiques descriptives; Mmes Nicole Durand et Mariette Fournier pour la dactylographie. Finalement, l'auteur tient à remercier tous ceux et celles qui, de près ou de loin ont permis la réalisation de ce travail.

Résumé

De 100 à 134 provenances de Pinus contorta ont été évaluées dans 11 essais sur le terrain 10 ans après la plantation. Les provenances sont réparties dans l'aire de distribution de l'espèce et font partie des variétés latifolia, contorta, murrayana et bolanderi. Le taux de survie et la hauteur moyenne des provenances sont liés aux conditions climatiques du site d'expérience et à la latitude, l'altitude et la longitude des provenances; les variations du taux de survie et de la hauteur moyenne des provenances, selon les variétés, ont été examinés. Le taux de survie et la hauteur moyenne des provenances des variétés contorta et bolanderi et des provenances, situées en Californie, de la variété murrayana sont très affectés par la dessiccation hivernale des aiguilles: les provenances de la variété latifolia situées au nord du 49e degré de latitude ne sont pas affectées par cette dessiccation; les provenances de la variété murrayana situées au nord du 42^e degré de latitude et les provenances de la variété latifolia situées au sud du 49e degré de latitude sont affectées partiellement. Sur les meilleurs sites, la hauteur moyenne des provenances, cinq ans après la plantation, explique de 44 à 74 % de la hauteur moyenne des provenances à 10 ans. Les 20 à 30 meilleures provenances identifiées sur chaque site sont, à quelques exceptions près, toutes de la variété latifolia: elles sont situées en Colombie-Britannique et en Alberta, au nord du 49^e degré de latitude et à une altitude variant, en général, de 700 à 1700 m. Sur le site des Îles-de-la-Madeleine, la hauteur moyenne à 10 ans des cinq meilleures provenances de pin de Murray est supérieure de 21 % à la hauteur moyenne des provenances témoins de pin gris. Sur quatre autres sites, les hauteurs moyennes des deux espèces sont semblables et sur cinq autres sites, les hauteurs moyennes sont inférieures de 11 à 33 % à celles du pin gris. Le pourcentage d'arbres avec fourches varie entre les sites de 1 à 44 % et celui avec tiges multiples, de 1 à 66 %. La formation de fourches et de tiges multiples est attribuable principalement aux attaques du charancon du pin blanc et du perce-pousse européen du pin et au défaut d'adaptation de certaines provenances aux sites de plantation. L'étude d'arbres sur 24 provenances de la variété latifolia montre que toutes ces provenances ont une croissance polycyclique et que l'accroissement secondaire représente de 27 à 37 % de l'accroissement annuel. Le nombre de branches varie de façon significative entre les arbres et entre les 24 provenances: environ 41 % des branches sont produites par les accroissements secondaires. Il n'y a pas de différence significative entre les 24 provenances pour le diamètre et l'angle d'insertion des branches. Cette étude confirme la variation géographique importante des provenances pour plusieurs caractères et la pertinence d'effectuer des tests de provenances multistationnels afin de choisir les meilleures provenances.

Mots-clés: *Pinus contorta*, test de provenances, survie, hauteur, dessiccation hivernale, croissance polycyclique, fourches, nombre de branches.

Abstract

Variation and choice of Pinus contorta provenances planted on several Québec sites. Field testing from 100 to 134 provenances of lodgepole pine were conducted in each of 11 locations and evaluated 10 years after planting. Provenances represented a broad spectrum of the natural distribution of the species and consisted of the varieties latifolia, contorta, murrayana and bolanderi. Survival and mean height of the provenances were influenced by climatic conditions at the test sites, and latitude, elevation and longitude of the provenances. Survival and mean height of the provenances of the varieties contorta and bolanderi and those of the variety murrayana from California were severely affected by winter desiccation, while provenances of the variety latifolia north of 49° of latitude were not. Provenances of the variety murrayana from north of 42° and those of the variety latifolia from south of 49° were only partly affected. On the best test sites, mean height of the provenances, five growing seasons after planting, explain 44 to 74 % of the mean height at 10 years. The best 20 to 30 provenances were almost all of the variety latifolia. They come from British Columbia and Alberta, north of 49° of latitude and at elevations ranging from 700 to 1700 m. At the Magdalen Islands site, mean height at 10 years of the five best provenances was 21 % larger than the mean height of the control provenances of jack pine. On four other sites, mean heights of lodgepole and jack pine provenances were similar, and on the remaining five sites, mean heights of lodgepole pine provenances were from 11 to 33 % lower than the jack pine provenances. Trees with forks ranged from 1 to 44 % depending on sites and trees with multiple stems accounted, for 1 to 66 %. Forks and multiple stems were mainly the result of the white pine weevil and European pine shoot moth attacks and also because some provenances were ill adapted to the test sites. Stem analyses of 24 provenances of the variety latifolia suggest that all provenances have polycyclic growth and that seconddary increment represents from 27 to 37 % of the annual increment. The number of branches varies significantly between trees and between 24 provenances. About 41 % of the branches resulted from secondary increment. There are no significant differences between these 24 provenances in diameter and angle of branches. This study confirms the important geographic variation of provenances for several traits and the necessity to test provenances at several sites.

Key words: Pinus contorta, provenance test, survival, height, winter desiccation, polycyclic growth, forks, number of branches.

Table des matières

Remerciements	٧
Résumé	vii
Abstract	vii
Liste des tableaux	xi
Liste des figures	xiii
Introduction	1
Chapitre premier	
Matériel	3
1.1 Situation géographique, altitude et classement des provenances	3
1.2 Description sommaire des peuplements échantillonnés	11
1.3 Caractéristiques climatiques du lieu d'origine des provenances	11
1.4 Localisation des provenances témoins de pin gris	12
Chapitre deux	
Méthodes	13
2.1 Culture en pépinière	13
2.2 Localisation et caractéristiques climatiques et écologiques des sites d'expérience	13
2.3 Dispositifs expérimentaux	17
2.4 Relevés phénotypiques	17
2.5 Analyse des données	18

Chapit	re trois	
i	Résultats et discussion	19
3.1 Tau	x de survie	19
3.1.1	Variation entre les sites	19
3.1.2	Variation entre les provenances	19
3.2 Hau	iteur	40
3.2.1	Variation entre les sites	40
3.2.2	Corrélation hauteur-âge	40
3.2.3	Variation entre les provenances	41
3.2.4	Choix des meilleures provenances	51
3.2.5	Croissances en hauteur et diamètre comparées avec ceux du pin gris	76
3.3 Car	actéristiques de forme et de branchaison	80
3.3.1	Fourches, flèches et tiges multiples	80
3.3.2	Rôle du polycyclisme et nombre de branches	81
3.3.3	Diamètre des branches	87
3.3.4	Angle des branches	87
Conclus	sion	91
Bibliogra	aphie	93

Liste des tableaux

Tableau 1	Localisation, altitude et classe- ment des provenances de <i>Pinus</i> contorta	4
Tableau 2	Localisation, altitude et caracté- ristiques écologiques des sites d'expérience	15
Tableau 3	Données climatiques des sites d'expérience	16
Tableau 4	Situation géographique et taux de survie des provenances à 10 ans à chaque site d'expé- rience	20
Tableau 5	Corrélation entre la hauteur moyenne des provenances à 10 ans et les hauteurs moyennes à 2 et 5 ans	41
Tableau 6	Situation géographique des provenances et hauteur à 10 ans à chaque site d'expérience	42
Tableau 7	Application du test de Friedman sur la hauteur moyenne à 10 ans des provenances retenues à chaque site	52
Tableau 8	Matrice des coefficients de corré- lation des rangs de Spearman pour la hauteur moyenne des 49 provenances communes aux neuf sites	75
Tableau 9	Hauteur et DHP à 10 ans, à chaque site, des cinq meilleures provenances de <i>Pinus contorta</i> et des provenances témoins de <i>Pinus banksiana</i>	77

xii Liste des tableaux

Tableau 10	Pourcentage d'arbres affectés par les insectes et les maladies à chaque site à 12 ans	86
Tableau 11	Moyenne des accroissements primaires et secondaires et fréquence d'expression du polycyclisme de 24 provenances à Bonaventure	86

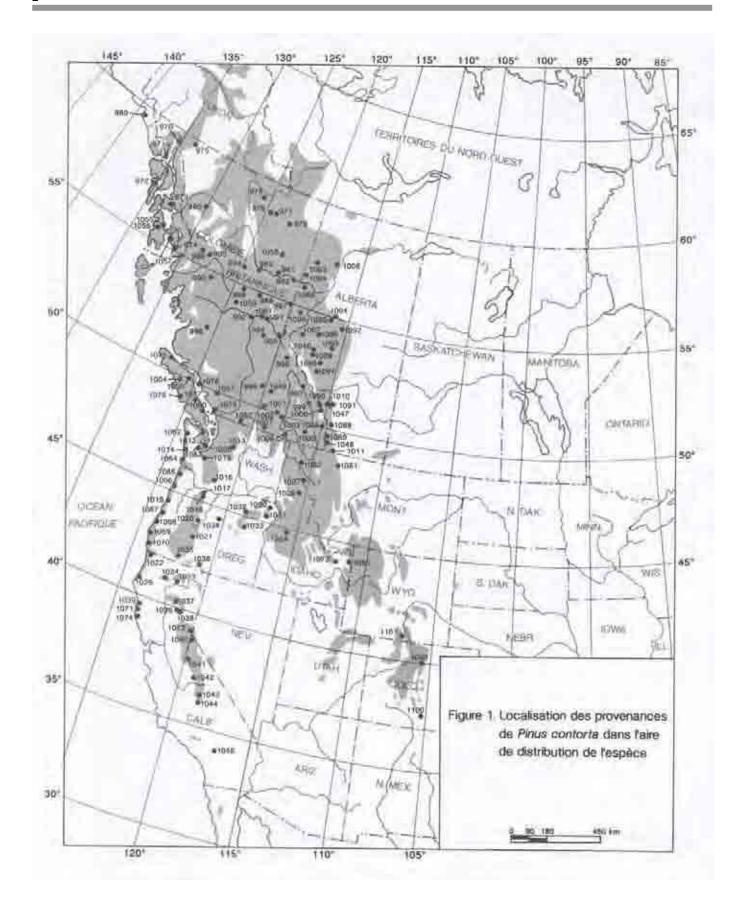
Liste des figures

Frontispice	Différence entre la provenance 1005 (Colombie-Britannique), saine et la provenance 973 (côtière, Alaska), affectée par une dessication hiver- nale prononcée et par le chancre	
	Scleroderris. Gaspé, août 1991	ii
Figure 1	Localisation des provenances de <i>Pinus contorta</i> dans l'aire de distribu- tion de l'espèce	2
Figure 2	Répartition des provenances de <i>Pinus contorta</i> en fonction de la distribution géographique approxi- mative des variétés	8
Figure 3	Altitude des provenances	9
Figure 4	Répartition géographique approximative des provenances de <i>Pinus contorta</i> en fonction des climats	10
Figure 5	Localisation des sites d'expérience	14
Figure 6	Mortalité à chaque site d'expérience	24
Figure 7	Taux de survie des provenances à 10 ans à Chibougamau	25
Figure 8	Taux de survie des provenances à 13 ans à Labrieville	26
Figure 9	Taux de survie des provenances à 10 ans à Lac-Saint-Ignace	27
Figure 10	Taux de survie des provenances à 10 ans à Dablon	28
Figure 11	Taux de survie des provenances à 10 ans à Gaspé	29

xiv Liste des figures

Figure 12	Taux de survie des provenances à 10 ans à Bonaventure	30	Figure 27	Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Dablon	58
Figure 13	Taux de survie des provenances à 10 ans à Parke	31	Figure 28	Localisation des meilleures prove- nances à 10 ans à Dablon	59
Figure 14	Taux de survie des provenances à 10 ans à La Patrie	32	Figure 29	Test de Waller-Duncan sur la hauteur moyenne des provenances	
Figure 15	Taux de survie des provenances à 10 ans à Lotbinière	33	- '	à 10 ans à Gaspé	61
Figure 16	Taux de survie des provenances à 10 ans à Verchères	34	Figure 30	Localisation des meilleures prove- nances à 10 ans à Gaspé	62
Figure 17	Taux de survie des provenances à 12 ans aux Îles-de-la-Madeleine	35	Figure 31	Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Bonaventure	63
Figure 18	Dessiccation hivernale des aiguilles à 11 ans à Lotbinière	36	Figure 32	Localisation des meilleures prove- nances à 10 ans à Bonaventure	64
Figure 19	Régression du taux de survie des provenances de la var. <i>contorta</i> à Lotbinière en fonction de la latitude de leur lieu d'origine géographique	38	Figure 33	Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Parke	65
Figure 20	Régression du taux de survie des provenances de la var. <i>murrayana</i> à		Figure 34	Localisation des meilleures prove- nances à 10 ans à Parke	66
	Lotbinière en fonction de la latitude de leur lieu d'origine géographique	39	Figure 35	Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à La Patrie	67
Figure 21	Régression de la hauteur moyenne des provenances de la var. <i>murray-ana</i> à Lotbinière en fonction de la latitude de leur lieu d'origine géo-	50	Figure 36	Localisation des meilleures provenances à 10 ans à La Patrie	68
Figure 22	graphique Localisation des provenances retenues par l'analyse de groupements	50	Figure 37	Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Lotbinière	69
	dans neuf sites	53	Figure 38	Localisation des meilleures prove- nances à 10 ans à Lotbinière	70
Figure 23	Hauteur relative (%) des provenances à 10 ans à Chibougamau	54	Figure 39	Test de Waller-Duncan sur la hauteur moyenne des provenances	
Figure 24	Hauteur relative (%) des provenances à 13 ans à Labrieville	55		à 10 ans à Verchères	71
Figure 25	Test de Waller-Duncan sur la hauteur moyenne des provenances		Figure 40	Localisation des meilleures prove- nances à 10 ans à Verchères	72
Figure 26	à 10 ans à Lac-Saint-Ignace Localisation des meilleures prove-	56	Figure 41	Test de Waller-Duncan sur la hauteur moyenne des provenances à 12 ans aux Îles-de-la-Madeleine	73
	nances à 10 ans à Lac-Saint-Ignace	57	Figure 42	Localisation des meilleures prove- nances à 12 ans aux Îles-de-la- Madeleine	74

Liste des figures xv


Figure 43	Localisation des provenances pour l'étude d'arbres à Bonaventure	82
Figure 44	Pourcentage d'arbres avec tiges multiples, fourches et flèches multi- ples à chaque site d'expérience à 10 ans	83
Figure 45	Pourcentage d'arbres avec four- ches, par variété, à 10 ans à chaque site d'expérience	84
Figure 46	Pourcentage d'arbres avec tiges multiples, par variété, à 10 ans à chaque site d'expérience	85
Figure 47	Répartition du nombre cumulatif de branches en fonction des arbres de 24 provenances à Bonaventure	88
Figure 48	Répartition du diamètre moyen des branches en fonction des arbres de 24 provenances à Bonaventure	89
Figure 49	Répartition de l'angle moyen des branches en fonction des arbres de 24 provenances à Bonaventure	90

Introduction

Dans son programme pour l'amélioration des arbres forestiers au Québec, l'ancien Service de la recherche du ministère des Terres et Forêts a procédé, entre autres, à l'introduction d'espèces exotiques, comme *Pinus contorta*, dans le but d'accroître la diversité des espèces de reboisement et d'obtenir, pour plusieurs caractères de valeur économique et héritables, des rendements égaux ou supérieurs à ceux des espèces actuellement utilisées.

L'aire de distribution de *Pinus contorta* est assez vaste et couvre des régions forestières diversifiées, ce qui laisse présager une variabilité génétique importante. Plusieurs provenances de cette espèce, utilisées dans les reboisements à plusieurs endroits en Europe, où elle a été introduite depuis 1920, se sont révélées plus productives que certaines espèces locales. L'introduction au Québec, en 1971 et 1972, de trois provenances de Colombie-Britannique semblait prometteuse pour la croissance et la forme des arbres, après quelques années en plantation, d'où l'intérêt de vouloir réaliser des tests de provenances avec cette espèce.

CRITCHFIELD (1957) a subdivisé cette espèce en quatre variétés: latifolia, contorta, murrayana et bolanderi; nous avons essayé de caractériser les provenances de chaque variété. Les 11 tests de provenances étudiés ont été établis sur des sites d'expérience dont les conditions environnementales sont très variables. Le principal objectif de cette étude vise à identifier les meilleures provenances sur chaque site d'expérience. Nous évaluons aussi son potentiel comme production ligneuse en comparant, s'il y a lieu, sur chaque site, la hauteur des meilleures provenances à celle de provenances témoins de pin gris. Nous nous intéressons finalement aux caractéristiques de branchaison des arbres des meilleures provenances dans un test et aux insectes et maladies qui peuvent, dans certains sites, affecter la qualité des tiges.

Chapitre premier

Matériel

1.1 Situation géographique, altitude et classement des provenances

Cette étude comprend 134 provenances de Pinus contorta. Les lots de graines de 113 provenances, récoltés de 1966 à 1968, ont été obtenus de l'IUFRO1 en 1970 par l'intermédiaire de M.H. Barner, de Humlebaek, Danemark. Cette collection de graines a été distribuée à travers le monde dans plus de 20 pays et la création du IUFRO Provenance Experiments with Pinus contorta Working Party a été réalisée dans le but de coordonner l'établissement des tests et l'évaluation des provenances (LINDGREN 1993). Cinq lots de graines du Colorado et de l'Idaho ont été obtenus du United States Tree Seed Center de Macon, Georgie, en 1975 et 16 autres lots de l'Alberta nous proviennent du Department of Lands and Forests de cette province. Les cônes ont été récoltés sur plus de 15 arbres pour la majorité des provenances de cette étude. Les provenances sont identifiées par un numéro donné au moment de la réception des graines (N° SR) (figure 1) auquel correspond, s'il y a lieu, pour la même provenance, le numéro d'identification de l'IUFRO (tableau 1).

Les variations anatomiques des provenances étudiées ont amené CRITCHFIELD (1957, dans LINES 1976b) à proposer la distinction de quatre variétés : contorta, bolanderi, latifolia et murrayana. La distribution géographique approximative de ces quatre variétés de Pinus contorta (CRITCHFIELD 1963 dans MIROV 1967, LINES 1976, LINES 1977, YING et LIANG 1993) et les provenances faisant partie de chaque variété sont présentées à la figure 2. Les provenances ont été classifiées au tableau 1 en provenances côtières et intérieures. Les provenances côtières font partie des variétés contorta et bolanderi tandis que les prove-

nances intérieures appartiennent aux variétés *latifolia* et *murrayana*. Des 134 provenances testées, 33 font partie de la variété *contorta*, 77 de la variété *latifolia*, 21 de la variété *murrayana* et seulement trois font partie de la variété *bolanderi*.

Les provenances de la variété *contorta* sont situées sur le littoral de l'Océan Pacifique, en général, à une altitude de ± 30 m. Deux provenances de la variété *contorta* (n° 1022 Californie et 1012 Washington) ont une altitude beaucoup plus élevée que les autres provenances de cette variété, soit 1091 et 1667 m respectivement.

Les provenances de la variété *bolanderi* occupent une superficie très restreinte en Californie, dans la plaine de Mendocino située sur le littoral du Pacifique. L'altitude des trois provenances varie de 15 à 30 m.

Les provenances de la variété *murrayana* sont localisées dans les chaînes de montagnes des Cascades et de la Sierra Nevada, situées, à l'intérieur, à une distance d'environ 180 km de l'océan Pacifique. L'altitude des provenances de la variété *murrayana* varie, en général, de 545 à 2394 m. La provenance n° 1015 (Washington) est située à plus faible altitude, soit 136 m.

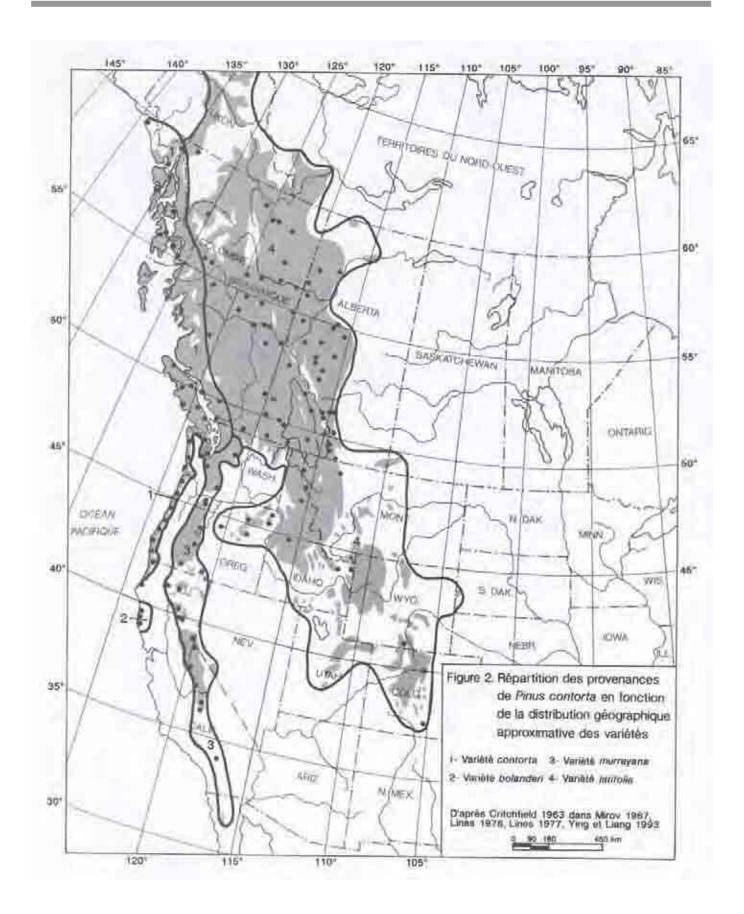
Les provenances de la variété *latifolia* occupent des plateaux et des massifs intérieurs, des sillons, des vallées et des montagnes dont, entre autres, les montagnes Rocheuses et leurs contreforts. L'altitude des provenances de la variété *latifolia* varie de 303 à 3250 m. L'altitude de toutes les provenances de cette étude est présentée au tableau 1 et à la figure 3.

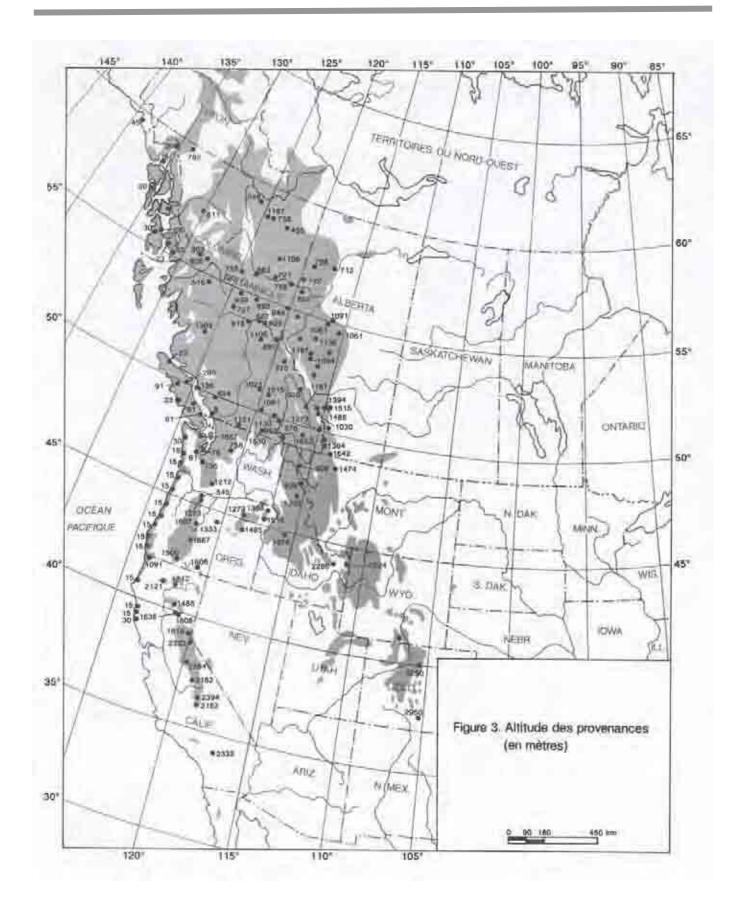
-

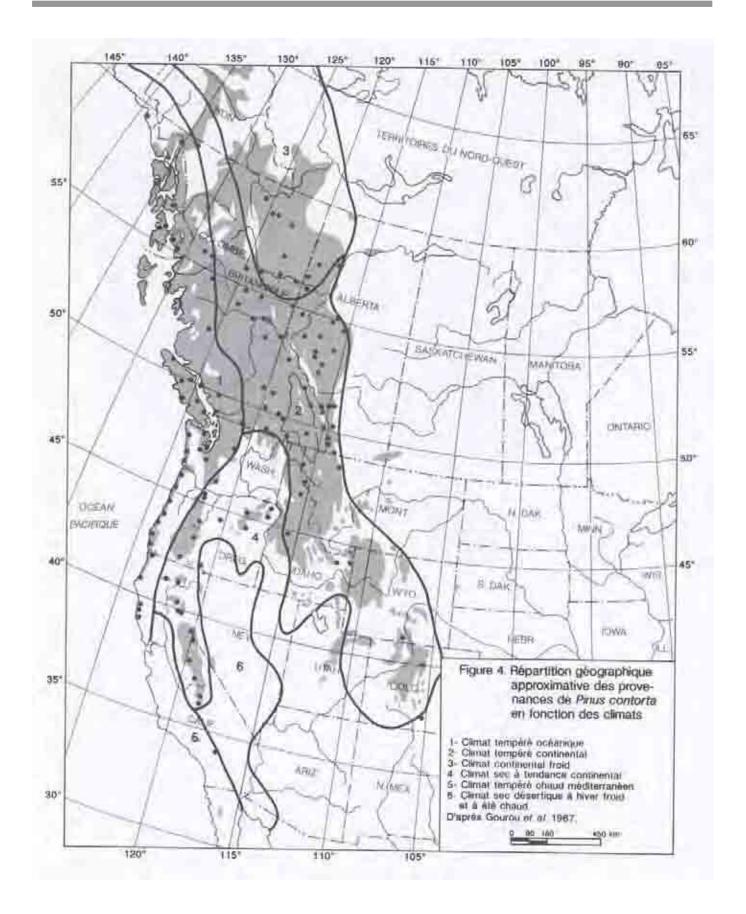
¹ International Union of Forest Research Organizations

Nº provenance	nance	Lieu d'origine	Latitude	Longitude	Altitude	Variété	Classement
(IDFRO)	(SH)		(nord)	(onest)	(m)		préliminaire ²
	898	Colorado	*	3	382	-	
2001	696	Alaska, Yakutat	59°30'	139°10'	45	C	· c
2002	970	Alaska, Skagway	59027	135018	30	C) (
2003	971	Alaska, Gustavus	58027	135045	90	ى د) د
2007	972	Alaska, Sitka	57004	135021	8 8	ى د) (
2008	973	Alaska, Petersburg	56047	132051	23	ى د	0 0
2012	974		55003	131035	3 6	0	0 (
2020	975	Colombie-Britannique, Altin, Magnussens Road	59°48"	133047	782	- د	·· ··
2022	926	Colombie-Britannique, Moncho Lake	59003	125°46'	848		
2023	776	Colombie-Britannique, Testa River	58040	124010	758		-87
2025	826	100	58°39'	124046	1167		
2026	646		58032	122042	155		- ,-
2027	980		57029	130013	21.0		
2030	981		56002	122005	704	100	- ,.
2031	982	-	56011	120037	788	-:-	- 1-
2032	983	ue, I	55°57"	123048	683		- 3:-
2033	984	ne,	55°48'	124049'	758	-	71,
2034	985	Colombie-Britannique, Kispiox	55°38′	127°54'	606	-	-91-
2035	986	ue,	55°37'	128°38"	303		- 14-
2037	286	Colombie-Britannique, Red Willow River	54°56'	120015	948	-	: 01 <u>—</u>
2038	988	Colombie-Britannique, McLeod Lake	54°49'	122°51'	693	-	
2039	686	Colombie-Britannique, Kalder Lake	54°49'	124°16'	939	-	-
2040	066	Colombie-Britannique, Telkwa	54°39′	127003	515	-	a n c
2047	991	Colombie-Britannique, Purden Lake	53°52'	121044	833	12	170
2049	392	Colombie-Britannique, Lynx Lake	53°39'	122°58'	818		
2051	993	Colombie-Britannique, McKale River	53°25'	120°20′	697		
2052	994	Colombie-Britannique, Wells	53°08'	121033	1106	14	
2054	995	Colombie-Britannique, Albreda Turnoff	52°35'	119010'	970	_	
2055	966	Colombie-Britannique, Tweedsmuir Park	52°30'	125°48'	1303	-	
2059	266	Colombie-Britannique, Donald Marl Creek	51,31,	117011	939		
2060	866	Colombie-Britannique, Wentworth Creek Road	50°58°	120°20'	1023	-	
2061	666	Colombie-Britannique, Westside Cartwright Lake	50°49°	116°26'	1167	_	
2062	1000		50°31'	115044	1030	_	-
2063	1001	Colombie-Britannique, Esperon Lake	50,03	119°39'	1061	-	
2064	1002	Colombie-Britannique, Kettle Valley Road	50°02'	118°34'	1130		
2066	1003		49°54'	118012	576	-	
2067	***	i					

No provenance	nance	Lieu d'origine	Latitude	Longitude	Altitude	Variété	Classement
(IUFRO)	(SR)		(nord)	(onest)	(m)		préliminaire ²
2068	1005		49034	116004	1652	-	-
2069	1006	Colombie-Britannique, Champion Lake	49011	117°35'	992	-	-
2073	1001	Colombie-Britannique, Jolly Creek	49,09,	119011	1530	-	-
2075	1008	Alberta, Hawk Hills	57°23"	117°33'	712	-	
2077	1009	Alberta, Mercoal	53,05	117011	1394	_	-
2078	1010	Alberta, Kananaskis	51°02'	115°02'	1394	_	
2080	1101	Alberta, Waterton Lakes	49°04"	113047	1642	-	ctee
2081	1012	Washington, Blue Mountain	47°57	123°16′	1667	U	O
2082	1013	Washington, Stevens Pass	47°47'	120°56'	758	ш	-
2085	1014	Washington, Westport	46°53"	124°07′	15	O	U
2086	1015	Washington, Vail	46°50'	122°36′	136	E	-
2088	1016	Washington, Trout Lake	46,04	121°27′	1212	E	· ·
2090	1017	Orégon, Zigzag	45°23'	121°52'	545	E) and
2091	1018	Orégon, Mount Hood	45°18'	121°45′	1273	E	
2093	1019	Oregon, New Port	44°34'	124°04'	15	O	O
2095	1020	Orégon, Broken Top	44,08	121°38'	1697	E	
2098	1021	Orégon, Chemult	43°19'	121°39′	1667	E	
2101	1022	Californie, Coon Mountains	41°50'	123°53'	1091	O	O
2102	1023		41016	121°55'	1212	٤	-
2103	1024	Californie, Gumboot Lake	41013	122°30′	2121	Ε	
2105	1025	Californie, Samoa	40°47'	124013	12	O	O
2106	1026	Californie, Bucks Lake	39°53'	121°07′	1636	Ε	
2120	1027	Montana, St. Regis, Mineral County	47°22'	115°24'	939	_	-
2121	1028	Washington, Port Orchard, Kitsap County	47°25'	122°40'	92	O	O
2122	1029	Montana, Lolo Hot Springs, Missoula County	46°40'	114°33	1333	-	-
2123	1030	Orégon, Enterprise, Wallowa County	45°38'	117016	1303	-	
2124	1031		45,19	117°24	1515	-	ee
2125	1032		45°10'	118°43	1273	-	-
2126	1033	Orégon, Prairie City, Grant County	44°32'	118°34'	1485	-	
2127	1034	Orégon, Mitchell, Crook County	44°29'	120°25'	1333	-	
2128	1035		42°23'	122012	1500	E	·
2129	1036	Orégon, Quartz Pass, Lake County	42018	120047	1606	E	
2130	1037		40°21	121°29′	1485	E	
2131	1038		39°53'	121,08	1606	E	,-
2132	1039	Californie, Fort Bragg, Mendocino County	39°29'	123048	15	q	U
2135	1040	South Lak	38,48	119°58′	2333	E	-
2136	1041	California Yosemita Toullimpa County	270541	100000	*000	-	


Tableau 1 (suite). Localisation, altitude et classement des provenances de Pinus contorta


	nie, Huntington Lake, Fresno County nie, Mineral King, Tulare County nie, Camp Nelson, Tulare County nie, Big Bear Lake, San Bernardino County nie, Big Bear Lake, San Bernardino County nie, Hinton nie, Big Bear Lake, San Bernardino County nie, Kananaskis nie, Hinton nie, Kananaskis nie, Eritannique, Fly Hills bie-Britannique, Garibaldi bie-Britannique, Manning Park bie-Britannique, Valley Road Valley County nie, Klawack River nie, Gravina Island ole-Britannique, Pink Mount	37°11' 36°27' 36°06' 34°13' 53°16' 51°01' 49°26' 50°43' 49°59' 49°59' 49°59'	118°36'	ACC.		
1043 Californie, Mineral Modes 1044 Californie, Camp Ne 1045 Californie, Eig Bear 1046 Californie, Big Bear 1047 Alberta, Hinton 1047 Alberta, Lynx Creek 1049 Colombie-Britanniqu 1055 Colombie-Britanniqu 1055 Alaska, Thorne Rive 1055 Alaska, Gravina Isla 1056 Alaska, Gravina Isla 1056 Colombie-Britanniqu 1057 Alaska, Gravina Isla 1059 Colombie-Britanniqu 1060 Idaho, Fremont Court 1061 Colombie-Britanniqu 1062 Washington, Johns 1064 Washington, Long B 1064 Orégon, Manzanita 1066 Orégon, Pistol River 1070 Californie, Fort Brag 1071 Californie, Fort Brag 1073 Californie, Truckee, 1073 Californie, Manchest Californie, Manchest	nie, Mineral King, Tulare County nie, Camp Nelson, Tulare County nie, Big Bear Lake, San Bernardino County a, Hinton a, Kananaskis a, Lynx Creek bie-Britannique, Fly Hills bie-Britannique, Garibaldi bie-Britannique, Wanning Park bie-Britannique, Valley Road Valley County , Thorne River , Klawack River , Gravina Island bie-Britannique, Pink Mount	36°27 36°06 34°13' 53°16' 50°43' 49°59' 49°59' 49°59'	118°36'	2182	ш	-
1044 Californie, Camp Ne 1045 Californie, Big Bear 1046 Alberta, Hinton 1047 Alberta, Lynx Creek 1048 Colombie-Britanniq 1050 Colombie-Britanniq 1054 Colombie-Britanniq 1055 Colombie-Britanniq 1055 Alaska, Thorne Rive 1055 Alaska, Klawack Riv 1056 Alaska, Gravina Isla 1057 Alaska, Gravina Isla 1058 Colombie-Britanniq 1059 Colombie-Britanniq 1060 Idaho, Fremont Cou 1061 Colombie-Britanniq 1063 Washington, Johns 1064 Washington, Long B 1065 Orégon, Manzanita 1066 Orégon, Pistol River 1069 Orégon, Pistol River 1070 Californie, Fort Brag 1072 Californie, Truckee, 1073 Californie, Truckee,	nie, Camp Nelson, Tulare County nie, Big Bear Lake, San Bernardino County a, Hinton a, Kananaskis a, Lynx Creek bie-Britannique, Fly Hills bie-Britannique, Garibaldi bie-Britannique, Manning Park bie-Britannique, Valley Road Valley County , Thorne River , Klawack River , Gravina Island bie-Britannique, Pink Mount	36°06' 34°13' 53°16' 51°01' 49°26' 49°59' 49°59' 49°59'	1400001	2394	Ε	
1045 Californie, Big Bear 1046 Alberta, Hinton 1047 Alberta, Hinton 1048 1048 Alberta, Lynx Creek 1049 Colombie-Britanniq 1050 Colombie-Britanniq 1054 Colombie-Britanniq 1055 Alaska, Klawack Riv 1055 Alaska, Klawack Riv 1055 Alaska, Gravina Isla 1056 Alaska, Gravina Isla 1056 Alaska, Gravina Isla 1059 Colombie-Britanniq 1060 Idaho, Fremont Cou 1061 Colombie-Britanniq 1062 Washington, Johns 1064 Washington, Long B 1064 Orégon, Manzanita 1066 Orégon, Pistol River 1070 Californie, Fort Brag 1071 Californie, Fort Brag 1072 Californie, Truckee, 1073 Californie, Truckee, Californie, Manchest	nie, Big Bear Lake, San Bernardino County a, Hinton a, Lynx Creek bie-Britannique, Fly Hills bie-Britannique, Garibaldi bie-Britannique, Manning Park bie-Britannique, Valley Road Valley County Thorne River Klawack River Garvina Island Garvina Island	34°13° 53°16° 51°01° 50°43° 49°59° 49°54° 49°59°	18 37	2152	E 8	
1046 Alberta, Hinton 1047 Alberta, Kananaskis 1048 Alberta, Lynx Creek 1049 Colombie-Britanniq 1050 Colombie-Britanniq 1052 Colombie-Britanniq 1054 Idaho, Valley Count 1055 Alaska, Thorne Rive 1055 Alaska, Thorne Rive 1056 Alaska, Gravina Isla 1057 Alaska, Gravina Isla 1058 Colombie-Britanniq 1059 Colombie-Britanniq 1060 Idaho, Fremont Cou 1061 Colombie-Britanniq 1062 Washington, Johns 1063 Washington, Long B 1064 Washington, Long B 1065 Orégon, Manzanita 1066 Orégon, Pistol River 1069 Orégon, Pistol River 1070 Californie, Fort Brag 1071 Californie, Truckee, 1073 Californie, Truckee,	a, Hinton A, Kananaskis A, Lynx Creek bie-Britannique, Fly Hills bie-Britannique, Garibaldi bie-Britannique, Manning Park bie-Britannique, Valley Road Valley County Thorne River Klawack River Gavina Island oie-Britannique, Pink Mount	53°16' 51°01' 49°26' 50°43' 49°59' 49°59' 49°59'	116059	2333	E	
1047 1048 1048 1050 1050 1055 1055 1055 1055 1055 105		51°01' 49°26' 50°43' 49°59' 49°59' 49°59'	117009'	1197	-	
1048 1049 1050 1051 1052 1053 1055 1055 1056 1060 1060 1060 1060 1060		49°26' 50°43' 49°59' 49°54' 49°59'	115002	1485		
1049 1050 1052 1053 1055 1055 1056 1060 1060 1060 1060 1060		50°43' 49°59' 49°54' 49°59'	114025	1364	-	
1050 1053 1053 1055 1055 1055 1056 1060 1060 1065 1065		49°59' 49°54' 49°59'	119027	121	-17-	-
1051 1052 1053 1055 1055 1055 1055 1060 1060 1065 1065		49°54' 49°04' 49°59'	125020	288	- (- (
1052 1053 1054 1055 1056 1057 1060 1067 1068 1067 1069 1072 1072 1073		49°04' 49°59'	123010	VCV	ی د	ه د
1053 1054 1055 1055 1056 1060 1064 1065 1065 1066 1067 1072 1072		49°59'	120046	1211	– د	د
1054 1055 1056 1059 1060 1064 1065 1065 1066 1067 1072 1072	Valley County , Thorne River , Klawack River , Gravina Island bie-Britannique, Pink Mount		114055	1273	-	
1055 1056 1057 1059 1060 1063 1065 1065 1066 1067 1070 1072	, Thorne River , Klawack River , Gravina Island bie-Britannique, Pink Mount	44,48	115048	1676	_	
1056 1057 1058 1069 1064 1065 1066 1066 1070 1070 1073	, Klawack River , Gravina Island bie-Britannique, Pink Mount	55°40'	132°45	88	- 0	- (
1057 1058 1069 1060 1064 1065 1066 1066 1070 1070 1073	, Gravina Island bie-Britannique, Pink Mount	55°34'	133003	30) C) (
1058 1059 1060 1061 1064 1065 1067 1068 1070 1072 1073	bie-Britannique, Pink Mount	55°22'	131042	3 8) (. (
1059 1060 1061 1063 1064 1065 1067 1069 1070 1072		57,000	122024	1106	-	j
1060 1061 1062 1063 1065 1066 1067 1070 1072 1073	bie-Britannique, Nechako River	54001	124°32°	727	-	
1061 1062 1063 1064 1065 1066 1067 1070 1072 1073	Fremont County	44012	111,06	2024	-	-
1062 1063 1064 1065 1066 1067 1070 1072 1073	bie-Britannique, Bowron River	53°54'	122°00'	667	-	
1063 1064 1065 1066 1068 1070 1072 1073	ngton, Queets	47°38'	124°18'	30	0	. 0
1064 1065 1066 1068 1070 1072 1073	ngton, Johns Prairie	47014	123°05'	61	0	
1065 1066 1067 1068 1070 1072 1073	igton, Long Beach	46°26'	124°03'	15	0	0
1066 1067 1068 1070 1072 1073	η, Manzanita	45°43	123°56'	t,	O	
1067 1068 1069 1070 1072 1073	n, Pacific City	45°13'	123°57	12	0	0 0
1068 1069 1070 1072 1073	n, Carter Lake	43°50'	124°09'	15	Ö	0
1069 1070 1072 1073	n, Hauser Dunes	43°30'	124°14'	15	υ	O
1070 1071 1073 1073	n, Port Orford	42°46'	124°31'	15	O	O
1072 1073 1074	1, Pistol River	42015	124°24'	15	O	O
1072 1073 1074	ie, Fort Bragg	39°25'	123°50'	12	Q	O
1073	Fremont County	44°00′	112°00'	2286	_	
1074	rie, Truckee, Placer County	39013	120°12'	1818	ш	-
	rie, Manchester, Mendocino County	38°58′	123°42'	30	Q	· ·
1075	sie-Britannique, Port Hardy	50°40°	127°22'	23	2	C
1076		50°01	124°46'	136	O	
2150 1077 Colombie-Britannique, Qualicum		49°22'	124°32'	61	ပ	0


Tableau 1 (fin). Localisation, altitude et classement des provenances de Pinus contorta

N" provenance (IUFRO) (SF	snance (SR)	Lieu d'origine	(nord)	Longitude (ouest)	Altitude (m)	Variété	Classement préliminaire ²
2151	1078	Colombie-Britannique, Lulu Island	49009	1230067	(0)	c	0
2152	1079	Colombie-Britannique, Tofino	49°05'	125°47	23	o c) U
2154	1080	Colombie-Britannique, Chemainus	48°55	123°45'	61	0) C
2155	1081	Montana, Cutbank Creek	48°30′	113015	1424	-) 5-
2156	1082	Montana, Kootenai	48015	115°30'	606		- 11
1	1083	Alberta, Peace River	57010	119°08'	758	-	
	1084	Alberta, Peace River	56°30′	119°50'	727		ė i–
:	1085	Alberta, Grande Prairie	55°54'	119°30°	803	-	- 1-2
	1086	Alberta	54,00,	117°10'	1136		
ř	1087	Alberta, Edson	53°48'	118°30'	2001	-	100
*	1088	Alberta, Blaimore	50°13'	114°26'	:	_	
ÿ.	1089	Alberta	49°29'	114°28'	3	_	
1	1090	Alberta	50°55°	115°44"	1		
ž	1091	Alberta, Calgary	51,05	114046'	1515	_	
ï	1092	Alberta, Whitecourt	54°35′	115°30'	1061	_	
2	1093	Alberta, Whitecourt	53°32'	115°55'		-	عدوا
7	1094	Alberta, Slave Lake	55°01°	116014	1091	_	-
1	1095	Alberta, Slave Lake	54°50′	116°34"	1061	=	
35	1096	Alberta	52°50'	116°28"		-	
4	1097	Alberta, Rocky Mountain	52°24'	116°37"		_	
1	1098	Alberta	54°40'	119007	:	_	- Y-
2169	1099	Colorado, Boulder	40°02'	105°33°	3250	-	
2168	1100	Colorado, La Veta	37°35′	105°13	2950		
;	1101	Colorado, Routt	40°12'	107°00'		-	-

¹ Variétés *latifolia* (I), *contoria* (c), *murrayana* (m) et *bolanderi* (b).
² Provenances intérieure (i) et côtière (c).

1.2 Description sommaire des peuplements échantillonnés

Les informations recueillies sur les fiches de récolte de cônes des provenances nous indiquent que la densité des peuplements des variété contorta et bolanderi est généralement très faible et que les arbres sont souvent distribués par groupe. Les arbres poussent sur des sols tourbeux à drainage mauvais dans la partie nord de l'aire de la variété contorta et sur des sols sablonneux à drainage rapide dans la partie sud de l'aire de la variété contorta et pour les trois provenances de la variété bolanderi. La croissance des arbres est lente et ils peuvent atteindre, à maturité, une hauteur moyenne de 6 à 10 m. Les arbres qui sont directement exposés aux vents sont plus rabougris et présentent des branches plus longues et d'un diamètre plus gros.

Les arbres des variété latifolia et murrayana peuvent atteindre une hauteur de 20 à 35 m. Ces arbres sont généralement droits, à cime conique et leurs branches sont beaucoup plus fines et plus courtes que celles des arbres des provenances côtières.

1.3 Caractéristiques climatiques du lieu d'origine des provenances

La variation importante des caractéristiques physiques de l'aire de distribution et son étendue font que l'espèce pousse sous des conditions climatiques très variables. La température et l'abondance des précipitations sont influencées par la latitude, l'altitude et la présence de chaînes de montagnes, qui ont tendance à séparer les masses d'air humide du Pacifique des masses d'air plus sec en provenance du continent (ANONYME 1988). La température minimum varie entre 7 °C sur la côte à -57 °C dans la partie nord des Rocheuses; la température maximum varie entre 27 °C le long de la côte et à haute altitude à plus de 38 °C à basse altitude à l'intérieur; les précipitations annuelles peuvent être de 250 mm à l'intérieur et à basse altitude et être supérieures à 5000 mm dans la partie nord de la côte (LOTAN et CRITCHFIELD dans BURNS et HONKALA 1990). La longueur de la période sans gel peut être de moins de 60 jours à l'intérieur (ANONYME 1988).

D'après la répartition géographique des climats de Gourou *et al.* (1967) les provenances étudiées feraient partie des climats suivants : froids (groupe de provenances n° 3), tempérés (groupe de provenances n° 1, 2, 5) et secs (groupe de provenances n° 4) (figure 4).

Les provenances des variété contorta et bolanderi ont poussé sous un climat tempéré océanique, où la température moyenne du mois le plus chaud est inférieure à 1 °C et les précipitations abondantes, se produisent surtout en saison froide (GOUROU et al. 1967).

Les provenances de la variété *murrayana* de même que quelques provenances de la variété *latifolia*, de l'Orégon et de Washington, sont comprises dans la zone de climat sec à tendance continentale; la température moyenne du mois le plus chaud y est supérieure à 20° C alors que la température moyenne du mois le plus froid y est inférieure à 0°; les précipitations peu abondantes se produisent surtout en saison chaude (Gourou *et al.* 1967).

La majorité des provenances de la variété *latifolia* font partie d'un climat tempéré continental. La température moyenne du mois le plus chaud est supérieure à 20 °C alors que la température moyenne du mois le plus froid est inférieure à 0 °C; les précipitations, plus abondantes que pour le climat sec à tendance continentale, se produisent surtout en saison chaude (Gourou *et al.* 1967).

Quelques provenances de la variété *latifolia*, situées dans la partie nord de la Colombie-Britannique et de l'Alberta, sont comprises dans la zone de climat continental froid. La moyenne de température du mois le plus chaud est supérieure à 15 °C alors que la moyenne de température du mois le plus froid est inférieure à -16 °C; les précipitations se produisent surtout en saison chaude (GOUROU *et al.* 1967).

La provenance nº 1045, située dans la partie sud de la Californie, est comprise dans la zone de climat tempéré chaud méditerranéen. La température est supérieure à 20 °C pendant au moins trois mois alors que la température moyenne du mois le plus froid est supérieure à 1 °C; les précipitations se produisent exclusivement en saison froide (GOUROU et al. 1967).

1.4 Localisation des provenances témoins de pin gris

Les lots de graines de six provenances témoins de pin gris ont été semées, à la pépinière de Duchesnay, en même temps que ceux des provenances de *Pinus contorta*. La localisation des provenances est la suivante: n° 1102, Manneville, 48° 29' N, 78° 29' O; n° 1103, Ronceveaux, 48° 05' N, 67° 30' O; n° 1104, Matawin, 47° 00' N, 73° 30' O; n° 1105, Gaboury, 47° 20' N, 78° 57' O; n° 1106, Briand, 46° 55' N; 76° 10' O; n° 1107, Casey, 47° 50' N, 74° 05' O. Les cônes des provenances témoins ont été récoltés, en forêt naturelle, à l'occasion de récoltes de cônes autorisées a l'époque par le ministère des Terres et Forêts. Ces sources de graines ont été utilisées pour produire des plants destinés au reboisement.

Chapitre deux

Méthodes

2.1 Culture en pépinière

Les graines de toutes les provenances ont été semées, à l'automne de 1977, à la pépinière de Duchesnay située à environ 40 kilomètres au nordouest de Québec, par 46° 52' N et 71° 39' O.

L'emplacement de la pépinière est situé dans le domaine climacique de l'érablière à bouleau jaune (THIBAULT, 1985). Le climat y est relativement chaud, continental et humide. Le nombre moyen de jours sans gel est de 114 et le nombre de degrés-jours au-dessus de 5 °C (1951-80) est de 1 585 (SERVICE DE L'ENVIRONNEMENT ATMOSPHÉRIQUE 1982a, 1982b).

Les sols de la pépinière sont des sables limoneux dérivés d'un dépôt fluvio-glaciaire avec un drainage de classe 2. Ils ont été labourés, hersés et fertilisés à raison de 269 kg/ha de triple super-phosphate et de 829 kg/ha de Sul-Po-Mag. Un amendement de 132 m³/ha de mousse de tourbe a été ajouté au sol.

Le plan expérimental d'ensemencement comprend trois répétitions. Les lots de graines ont été distribués aléatoirement et semés en vrac sur des plate-bandes d'environ un mètre de largeur. Les semis ont été cultivés en pépinière, sans éclaircie ni repiquage, durant une période de 2 et 3 ans avant leur établissement dans les tests. Les racines les plus longues ont été taillées au moment de l'extraction des plants.

*

2.2 Localisation et caractéristiques climatiques et écologiques des sites d'expérience

Neuf tests de provenances ont été installés au printemps de 1980 et cinq autres en 1981. Les tests de provenances étudiés sont tous situés dans les arboretums du Service de l'amélioration des arbres (figure 5). À cause de la sensibilité de *Pinus contorta* à la rouille-tumeur noduleuse (*Cronartium comptoniae* Arth.) (YEATMAN), le choix des sites a été fait en tenant compte si possible de l'absence, à proximité de la plantation, de *Comptonia peregrina* (L.) Court. et de *Myrica gale* L., les deux plantes hôtes de la maladie (SINCLAIR et al. 1987).

La situation géographique, l'altitude et les caractéristiques écologiques des sites d'expérience sont présentées au tableau 2 et les données climatiques, au tableau 3. Les données climatiques proviennent du SERVICE DE L'ENVIRONNEMENT ATMOSPHÉRIQUE (1982, 1982b, 1982c), et les stations météorologiques en cause sont, pour la plupart, situées à quelques kilomètres des sites d'expérience.

Les sites d'expérience énumérés aux tableaux 2 et 3 sont placés, pour Chibougamau à Verchères, dans un ordre décroissant de sévérité des conditions climatiques de croissance (longueur moyenne de la période sans gel). Les données concernant les sites des Îles-de-la-Madeleine ont été placées volontairement à la fin des tableaux compte tenu des conditions particulières de ces sites (très venteux, air salin, influence maritime). Comme on peut le constater, l'ensemble de ces sites couvre des conditions écoclimatiques très variables. En se référant à THIBAULT (1985), on peut identifier sept domaines climaciques

14 Méthodes

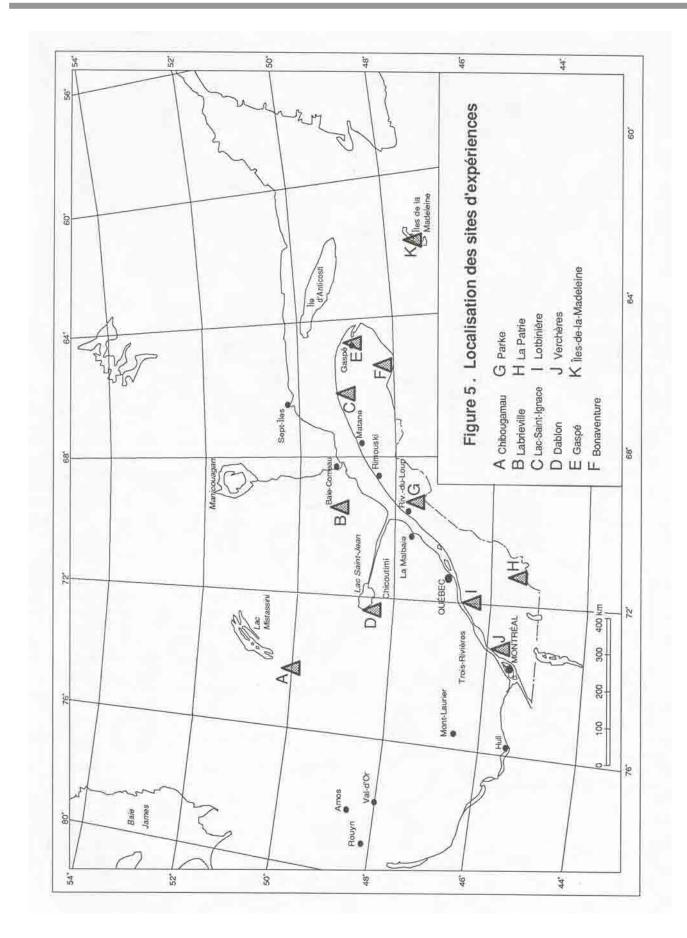


Tableau 2. Localisation, altitude et caractéristiques écologiques des sites d'expérience

Site	Latitude (nord)	Longitude (ouest)	Altitude (m)	Texture du sol	Domaine et région écologique ²
Chibougamau	50001	74°12'	411	sable	pessière noire à mousses, 12b
Labrieville	48012	69°33'	470	sable loameux	sapinière à bouleau blanc, 8/
Lac-Saint-Ignace	49°01′	66°18'	460	loam sablo-argileux à Ioam sableux	sapinière à bouleau blanc, 8a
Dablon	48°21'	72014	303	loam	sapinière à bouleau blanc, 8j
Gaspé	48°50'	64°40'	318	loam sableux	sapinière à bouleau blanc, 8a
Bonaventure	48°11'	65°21"	227	loam	érablière à bouleau jaune et sapinière à bouleau blanc, 4b
Parke	47°33'	69°27	378	loam	sapinière à bouleau jaune, 5a
Matapédia ⁺	48°32°	67°26'	198	loam	sapinière à bouleau jaune, 5c
La Patrie	45°22′	71017	200	loam	érablière à bouleau jaune et sapinière à bouleau blanc, 4a
Mont-Laurier*	46°36'	75°50'	250		érablière à bouleau jaune et tilleul, 3d
Lotbinière	46°30'	71°55′	83	sable loameux	érablière à tilleul et érablière à bouleau jaune, 2c
Verchères	45°41'	73019	44	sable loameux	érablière à caryer et érablière à tilleul, 1b
îles-de-la-Madeleine	47°26	61°45'	30	loam sableux	pessière blanche à sapin
Îles-de-la-Madeleine ⁺	47°26′	61°45'	30		et sapinière à épinette blanche, 10a pessière blanche à sapin et sapinière à épinette blanche, 10a

 ⁺ Tests annulés.
 1 Classe texturale déterminée à partir d'échantillons de sol pris dans les tests.
 2 Selon THIBAULT (1985).

Tableau 3. Données climatiques des sites d'expérience

	Temp.	Temp.	Temp.	Temp.	Temp.	Longueur	Degrés-jours	Précip.
Site	(₉ C)	(°C)	janv. (°C)	extrême (°C)	août (°C)	période sans gel en jours (prob. 50 %)	de 5,0 °C	ann. (mm)
Chibougamau	8,0-	15,8	-20,1	-45,6	14,4	80	1 139	1 000
Labrieville	1,5	16,7	-17,5	-45,0	15,1	80 à 90	1 233	847
Lac-Saint-Ignace	2,0	16,6	-12,9	-34,4	15,0	90 à 100	1 233	1 049
Dablon	1,1	16,7	-16,9	-47,0	15,3	Près de 100	1.288	975
Gaspé	3,5	16,8	-10,6	-41,7	15,4	Près de 100	1 288	896
Bonaventure	2,8	17,0	-11,0	-39,4	15,6	Près de 100	1 295	1 119
Parke	2,2	17,0	-13,3	41,7	15,5	Près de 100	1 291	1 049
Matapédia ⁺	2,5	17,4	-13,4	-38,9	15,9	Près de 100	1 390	931
La Patrie	3,7	17,4	-11,3	7,14-	16,1	Près de 100	1 545	1 035
Mont-Laurier ⁺	3,5	18,0	-13,8	-41,1	16,9	100 à 110	1 624	1 138
Lotbinière	3,8	18,6	-12,4	-38,3	17,2	110 à 120	1 650	1 230
Verchères	5,9	20,6	-10,6	-37,2	19,4	140 à 150	2 046	1 000
Îles-de-la-Madeleine	4,6	16,7	-5,9	-25,0	15,2	161	1 337	794
Îles-de-la-Madeleine ⁺	4,6	16,7	-5,9	-25,0	15,2	161	1 337	794

Selon Service de L'environnement Atmosphérique 1982a, 1982b, 1982c. + Tests annulés.

Méthodes 17

et 12 régions écologiques différentes. Le climat des sites expérimentaux des Îles-de-la-Madeleine subissent une forte influence maritime, ce qui explique les valeurs relativement élevées de la température moyenne de janvier (-5,9 °C) et de la période sans gel (161 jours) à cette latitude.

2.3 Dispositifs expérimentaux

Les dispositifs sont formés de 10 blocs incomplets non équilibrés. Les blocs sont constitués de parcelles linéaires auxquelles quatre plants d'une provenance donnée ont aléatoirement été attribués. Chaque provenance se retrouve pas plus d'une fois dans un bloc. L'espacement entre les plants est de 2,0 x 2,0 m. Certaines provenances de Pinus contorta ont été testées seulement dans un ou quelques dispositifs à cause du nombre insuffisant de plants. Le nombre de provenances varie de 134 à Verchères à 100 à Lac-Saint-Ignace. Selon les sites d'expérience, de une à cinq provenances témoins de pin gris sont représentées dans les dispositifs comme base de comparaison pour la croissance en hauteur et en diamètre ainsi que pour la forme des arbres. Un regarni avec les deux espèces a été réalisé en 1981 dans les dispositifs établis en 1980.

2.4 Relevés phénotypiques

La hauteur moyenne, par provenance, des plants (2-0) en pépinière a été évaluée visuellement, à l'aide d'une règle, dans chaque répétition.

La hauteur et la pousse annuelle des arbres ont été mesurées après 1, 2, 5 et 10 ans de croissance en plantation dans un nombre variable de dispositifs (7, 6, 13 et 9 dispositifs) pour chaque année de mesurage. Un des deux dispositifs installés aux Îles-de-la-Madeleine et ceux à Mont-Laurier et Matapédia n'ont pas été mesurés, après 5 ans, à cause d'une mortalité trop élevée. La hauteur a été mesurée à 13 ans au lieu de 10 ans dans le dispositif de Labrie-ville. La hauteur et le DHP ont été mesurés à 9 et 12 ans dans le dispositif établi en 1980 aux Îles-de-la-Madeleine. Le DHP a été mesuré dans tous les dispositifs dont la hauteur a été mesurée à 10 ans.

Des observations sur la dessiccation hivernale des aiguilles ont été menées, au printemps, en 1985 et 1990 à Lotbinière et en 1991 à Bonaventure. Pour ces deux dispositifs, des observations ont été faites sur chaque parcelle de toutes les répétitions. Les provenances ont été classées, selon l'importance des dégâts, en trois groupes pour la sensibilité à la dessiccation hivernale des aiguilles : les provenances

non sensibles sont celles qui ne présentent aucun symptôme de dessiccation; les provenances de sensibilité moyenne sont celles dont les aiguilles de la pousse de l'année antérieure sont rougeâtres; les provenances de sensibilité élevée sont celles dont les aiguilles de l'année antérieure sont complètement rouges et les rameaux sont partiellement ou totalement défoliés.

Des données sur les caractères morphologiques des arbres comme les flèches multiples, les tiges multiples et les fourches ont été prises lors du mesurage à 10 ans de croissance. Les flèches multiples sont des pousses terminales de l'année, qui se développent à hauteur égale sur l'arbre; les tiges multiples sont définies comme étant la division du tronc en deux tiges ou plus à moins de 1,30 m du sol tandis que les fourches sont définies comme étant la division du tronc en deux tiges ou plus à 1,30 m et plus du sol (GAGNON et NUMAINVILLE 1991). Les données recueillies portent sur le nombre de flèches, de tiges et de fourches observées par arbre.

Un relevé des arbres affectés par les insectes et les maladies a été réalisé, par le Service de l'amélioration des arbres, lors du dernier mesurage à 10 ans. Ces données portent sur la nature, la cause et l'importance des dégâts pour chaque arbre de toutes les provenances. L'identification de l'agent déprédateur et l'évaluation de l'importance des dommages ont été réalisées par le Service de protection contre les insectes et les maladies, dans sept dispositifs en 1991. Un total de 100 arbres, par dispositif, ont été choisis aléatoirement par sondage en continu le long de virées. La procédure d'échantillonnage est décrite en détail dans l'ouvrage de BOULET et al. (1994).

Une étude d'arbres a été réalisée à Bonaventure, après 13 ans de croissance en plantation, sur 24 provenances classées parmi les meilleures dans au moins un des 11 tests analysés. Les données ont été prises dans les blocs un à quatre sur un total de quatre arbres par provenance. Pinus contorta est une espèce dont la croissance annuelle est polycyclique. L'angle d'insertion des branches au tronc a été mesuré, à l'aide d'un rapporteur d'angle, sur toutes les branches des verticilles situés à la base des accroissements primaires de 7 et 8 ans après la plantation. Le diamètre de toutes les branches des verticilles situés à la base des accroissements primaires et secondaires, pour les années de croissance 6, 7 et 8 après la plantation, a été mesuré à 3 cm du tronc, à l'aide d'un compas forestier pour tiges de petit diamètre. Des observations sur la rectitude de la tige de tous les arbres compris dans les quatre premiers blocs ont été faites.

18 Méthodes

2.5 Analyse des données

L'analyse des données a été effectuée sur 11 tests de provenances. Les tests de Matapédia et de Mont-Laurier ont été annulés parce qu'il sont installés sur des sites mal drainés, la survie et la croissance de ces arbres sont très affectées. Le test effectué en 1981 aux Îles-de-la-Madeleine a également été annulé parce que les mulots ont annelé 50 % des arbres au cours de la première année d'implantation du test.

Afin de déterminer la variation phénotypique d'ordre génétique et d'origine géographique des individus vivant dans différentes parties de l'aire de distribution de l'espèce, et représentés dans les tests établis au Québec, nous avons procédé par les étapes suivantes: 1) calcul de statistiques descriptives pour toutes les variables étudiées; 2) analyse de corrélation entre les différentes variables concernant la croissance (DHP, hauteur, hauteur exprimée en rang) et la survie; 3) estimation des paramètres des modèles de régression montrant les relations entre le taux de survie des provenances de chaque variété et leur latitude; 4) analyse de groupement des provenances pour les variables de hauteur et du taux de survie, dans neuf dispositifs, afin de déterminer les groupes de provenances les plus performantes. L'analyse de groupement n'a pas été faite pour les tests de Chibougamau et Labrieville à cause du faible taux de survie de la majorité des provenances à ces deux endroits; 5) analyse de la variance pour déterminer s'il existe des différences significatives, pour la hauteur, entre les provenances des groupes retenus dans neuf dispositifs; 6) test de comparaisons multiples de Waller-Duncan sur les dernières données de hauteur (10 et 12 ans) afin de déterminer, parmi les groupes retenus dans chaque test, les meilleures provenances. Pour les deux dernières analyses, dans les cas où il y avait un problème de normalité des résidus, nous avons fait un test non paramétrique de Friedman.

Le test de comparaisons multiples de Waller-Duncan diffère des autres tests (ceux de Tukey, Scheffé, LSD, etc.) entre autres parce qu'il n'utilise pas le seuil de signification α mais fait intervenir un rapport k (k ratio) entre la probabilité de commettre une erreur de type I et la probabilité de commettre une erreur de type II. Les rapports k de 50 : 1, 100 : 1 et 500 : 1 correspondent sensiblement aux seuils de 0,10, 0,05 et 0,01. Le rapport utilisé dans les présentes analyses est de 100 : 1.

Les provenances sont placées dans l'ordre décroissant des hauteurs moyennes et les comparaisons entre ces dernières ne concernent que deux moyennes à la fois. L'interprétation des résultats se fait de la façon suivante : toute paire de moyennes étant soulignée par un même trait signifie qu'avec les données dont on dispose, on n'a pu détecter de différence significative entre ces moyennes; toute paire de moyennes n'étant pas soulignée par un même trait indique que ces moyennes sont significativement différentes (STEEL et TORRIE 1980).

Chapitre trois

Résultats et discussion

3.1 Taux de survie

3.1.1 Variation entre les sites

Le taux de survie à 1, 2, 5, 9, 10, 12 et 13 ans a été déterminé uniquement à partir du matériel commun aux 11 tests étudiés. Quatre-vingt-quinze provenances, dont 52 de la variété latifolia, 23 de la variété contorta, 19 de la variété murrayana et une de la variété bolanderi, sont communes à tous les tests. On constate (figure 6) que la mortalité varie de façon importante entre les tests à 5 ans et davantage à 10 ans après la plantation ou au dernier mesurage. La mortalité observée à l'automne de l'année de la plantation est attribuable au choc de plantation. Les plants à racines nues étaient de taille relativement faible (± 25 cm en 1981) et leur système racinaire, peu développé. Passé le choc de plantation, la mortalité a augmenté, avec le temps, sur tous les sites. Cette mortalité s'est accrue plus rapidement sur certains sites, pour des intervalles de temps égaux après la plantation. L'augmentation non constante de la mortalité entre les sites découle de deux raisons principales: 1) le défaut d'adaptation d'un nombre variable de provenances aux sites à cause de conditions de croissance au lieu d'origine trop différentes de celles du lieu de plantation. Sur les sites de Chibougamau, Labrieville, Lac-Saint-Ignace et Dablon, la mortalité décroît avec une diminution de la sévérité des conditions climatiques de croissance mais demeure encore plus élevée, à 5 et 10 ans, qu'aux autres sites; 2) la qualité de préparation et d'entretien des sites après la plantation. La mortalité observée au cours des premières années après la plantation à Verchères contraste avec celle observée à Lotbinière et Gaspé. La présence d'une végétation ligneuse et herbacée compétitive, assez dense à Verchères, a causé une mortalité plus élevée sur ce site, même parmi les provenances les mieux adaptées. À Gaspé et à Lotbinière, la compétition était à toute fin pratique absente.

3.1.2 Variation entre les provenances

Pour les quelques provenances dont le nombre de plants par test est inférieur à 40, nous avons estimé, après examen des données, à 24 le nombre minimum de plants pour quantifier le taux de survie. Les provenances avec moins de 24 plants à la plantation n'ont pas été considérées dans ce calcul.

Le taux de survie de chaque provenance, sur chacun des sites, est présenté au tableau 4 et aux figures 7 à 17. Dans le tableau 4, les provenances sont groupées par variété et classées en ordre décroissant de latitude.

Le taux de survie des trois provenances de la variété *bolanderi* est très faible, voire nul à presque nul, dans tous les tests. Ces provenances, situées à faible altitude dans la plaine de Mendocino en Californie, croissent à la jonction de deux zones caractérisées respectivement par un climat tempéré océanique et un climat tempéré chaud méditerranéen (figure 4). Ces provenances sont affectées, dans tous les tests, par une dessiccation hivernale prononcée des aiguilles (figure 18) qui cause une défoliation importante des rameaux et la mortalité des bourgeons et des pousses terminales. On peut dire que ces provenances souffrent d'un manque d'adaptation héréditaire face à leur nouvel environnement.

Le taux de survie des provenances de la variété contorta varie de façon significative, à chaque site, entre les provenances. Le taux de survie des provenances est lié beaucoup plus à la variation de la latitude qu'à celle de la longitude à cause de la forme de l'aire de distribution géographique de cette variété (figure 2). Pour les sites de Bonaventure, Parke, La Patrie, Verchères, Gaspé et les Îles-de-la-Madeleine, le modèle de régression est semblable à celui de

2	Provenance	40					Taux	de survie	Taux de survie (%) et sites d'expérience ²	s d'expér	ience ²			
Lat.	g t	Long.	Alt.	풍	LAB ¹³	IGN	DAB	GAS	BON	PAR	PAT	ГОТ	VER	IMA ¹²
0	59048	133047	782								0.00			
0	59003	125046	848			:			\$		2	9)	26	ŧ
a	58040	1040401	750	:		1	**	1	3	3	177	100	÷	8
2 0	20000	1010101	100	; 6	: 5	: (3	i i		3)	75	80	63	÷
χ:	1000	100000	101	0,	2	22		4	3	(*)	64	9	23	70
70.1	28 32	122.42	455	18	23	89	92	92	82	73	73	75	48	75
PA	57.73	130°13	811	* S	\$		0	2	÷	7	83	3	20	:
-	57,23	117,33	712	48	20	78	43	92	98	78	9	85	58	78
	57,10	119,08	758	43	28	28	20	80	78	38	92	73	53	73
	57,00	122°24'	1 106	42	40	78	;	:	:		89	80	70)
	56,30	119°50'	727	47	38	63	20	80	29	06	20	65	9	75:
	56,02	122°05'	721	63	09	20	90	85	88	75	80	83	63	5 5
	6,01	120°37	788	40	48	3	8		83		80	75	73	37
	55°57	123°48'	682) (i	: 1		83	73	75	75	200	2 0	70
	55°54	119°30'	803	36	28	83	68	78	202	73.0	000	8	3 6	7.0
	5°48°	124°49°	758	43	28	88	48	82	86	78	88	28	2 00	70
	55°38'	127°54'	909	45	48	69	28	88	92	70	90	06	28	7.5
100	5,37	128°38'	303	19	45	29	22	72	70	29	57	80	28	20
0	5,01,	116,14	1 091	45	40	65	09	83	75	81	75	78	65	70
10	54,26	120°15	948	53	20	20	09	06	88	89	85	63	80	202
100	54,50	116°34'	1 061	36	31	09	20	20	20	28	20	75	60	78
	54,49	124016	939	25	92	29	63	78	86	80	78	78	73	75
100	54,49	122051	693	20	28	89	63	92	98	22	89	70	83	83
-	54,40	119,07	2	39	43	73	40	73	73	20	58	85	63	60
1 Ph	54,39,	127,037	515	3	9	:		:					3	3
100	4,32,	115,30,	1 061	55	28	61	45	9	78	20	43	63	43	55
	54,01,	124°32′	727	3	*	4	(s		:		75	88	63	75
100	54,00,	117,10	1 136	20	40	70	20	82	78	29	09	92	65	70
	53,54	122,00,	299	45	*	;	73	88	75	20	75	75	78	63
100	3,25	121044	833	38	33	63	53	78	63	55	48	89	45	90
	53°48	118°30′	147	53	40	20	+89	83	83	80	52.	78	2 2	80
	53,33	122°58'	818	33	30	20	53	85	78	28	70	75	10	909
	53°32°	115°55'		43	48	0	89	75	63	28	65	80	23.0	8 8
	53°25'	120°20′	269	38	45	28	28	83	28	45	45	89	89	23 6
	53°16'	117,009	1 197		;	:	ī	3			7.0	75	100	3
													1.7	

	a	Provenance	9					Taux	de survie	Taux de survie (%) et sites d'expérience	es d'expèr	lence ²			
No SR	Varièté	Lat. (nord)	Long. (ouest)	(m)	품	LAB13	IGN	DAG	GAS	BON	PAR	PAT	101	VER	IMA ¹²
600	~	53,05	1170111	1 394	25	53	22	60	88	78	68	55	7/3	.80	RU
960	-	52,50	116°28"	18	30	40	69	50	80	75	63	69	88	8	8 8
966	-	52,35	119010	970	12	20	43	58	78	75	202	190	88	48	8
966	1	52,30	125°48	1 303	33	48	75	99	83	12	85	68	73	8 9	202
790	-	52°24	116037		16	90	90	20	99	88	513	73	909	8	100
166	-	51,31,	117011	939	OF	53	1						. :	18	3
091	1	51,05	114046	1515	36	92	45	7.5	93	73	88	20	80	9	70
010	1	51,05	115,02	1 394	38	22	45	58	80	88	63	38	73	63	80
047	1	51,011	115,02	1 485	45	45	72	45	83	76	73	70	73	200	8
866	1	50°58	120°20	1 023						1		88		8	3
060	,	50°55	115044		28	38	58	63	78	58	83	89	HO	200	RA
666	1	50049	116°26'	1.167	100				80	60		85	88	88	2 15
049	1	50°43	119027	1515	30	33	63	50	83	100	78	80	22	8 19	8
000	-	50031	115044	1 030	1000			28	58	100	8	20	73	200	48
07	1	50°13	114026	196	34	20	55	28	83	80	202	23	75	88	88
100	-	50,03	119939	1.061		1	3 2	1	7						3
005	-	50,05	118,34.	1 130	· der	×		940	88	80	48	28	80	555	80
m	-	49°59'	114°55	1273	14	43	45	12	20	89	45	18	89	2	209
m	-	49°54	118012	576	19	22	28	20	68	70	5	18	20	28	45
900	-	48,34.	116,04	1 652	23	28	83	28	80	86	85	60	90	200	23
680	-	49°29'	114°28'	94	30	25	48	S	70	85	22	20	75	12	63
048	1	49°26	114°25	1364		X	1		,	1	13	92		2	7.7
900	_	49011	117,35	266	10	50	40	\$	99	58	55	38	80	19	45
1	-	49,03	119011	1 530	à	ş.	-	20	83	89	89	50	75	48	73
011	-	49,04	113047	1 642	4	ı	1		83	70	90	75	75	99	26
052	-	49,04,	120046	1121	1	¥	1	'n	88	83	4	78	22	88	92
081	_	48,30,	113015	1 424	36,	35	i de	1	5	1	13	72	68	98	89
D)	-	48015	115°30'	606	10	ın	35	48	83	48	30	56	78	20	2
027	_	47922	115°24"	939	0	50	20	63	R	99	23	63	85	53	88
029	_	46,40	114,33	1 333	10	32	45	45	88	989	52	48	78	43	200
030	_	45,38	117016	1 303	00	23	43	43	80	99	53	48	75	68	83
031	-	45019	117024	1515	9	10	28	22	75	45	38	43	73	68	22
032)	45,10	118,43	1 273	0	18	30	35	63	22	99	20	73	63	43
054	~	44,48	115,48	9291	iń	15	19	38	90	83	99	48	92	45	68
000		***	140000	SOF.		-	***	47	-				1000	1000	

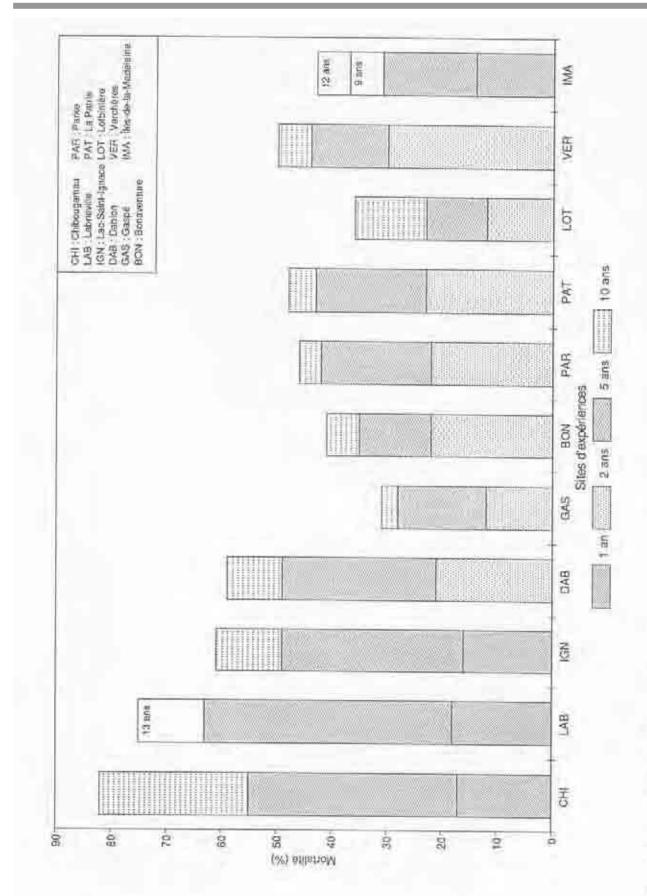
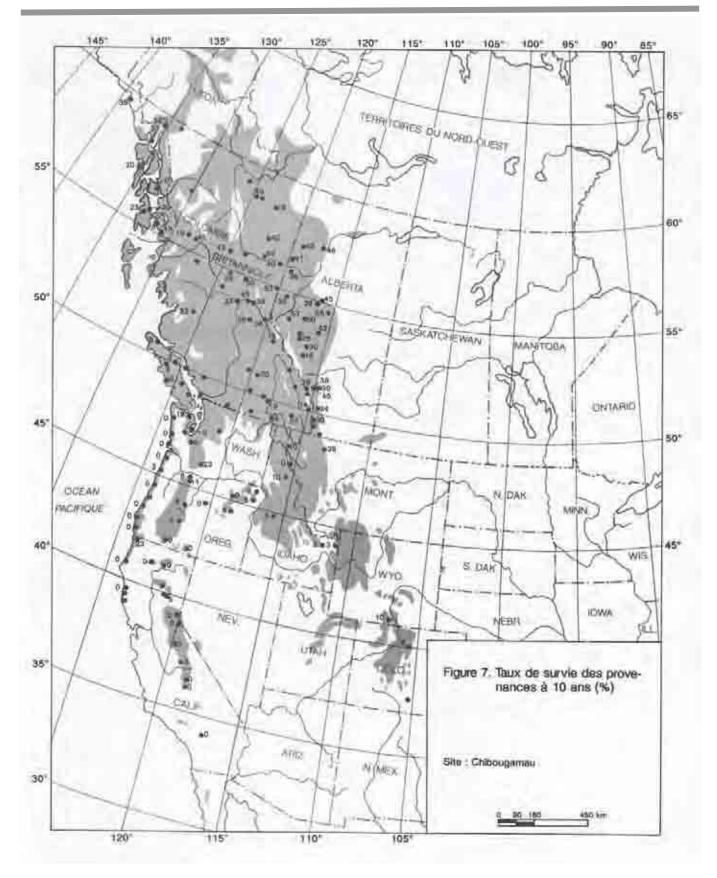
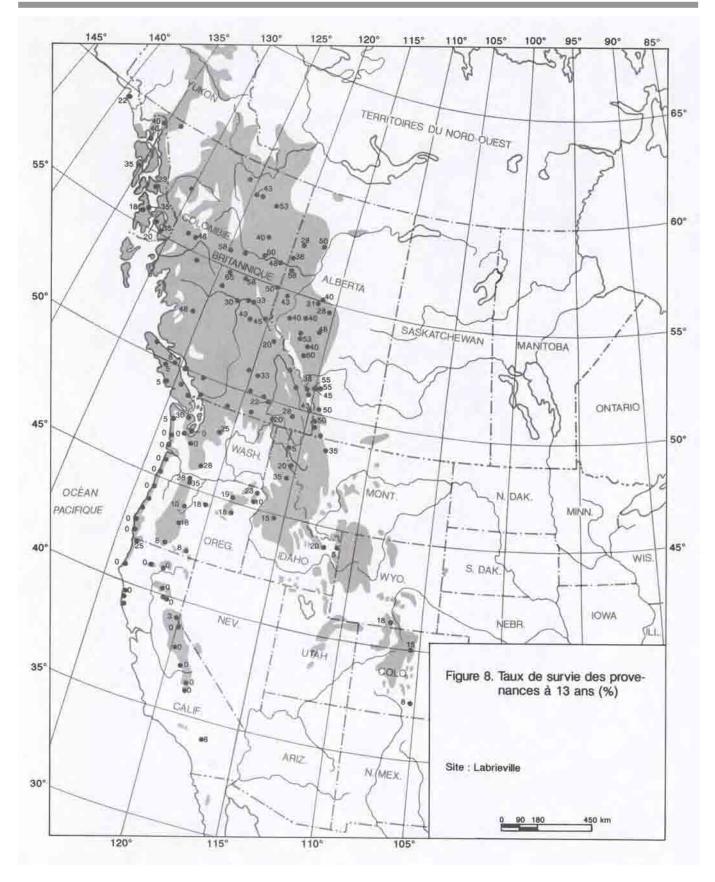
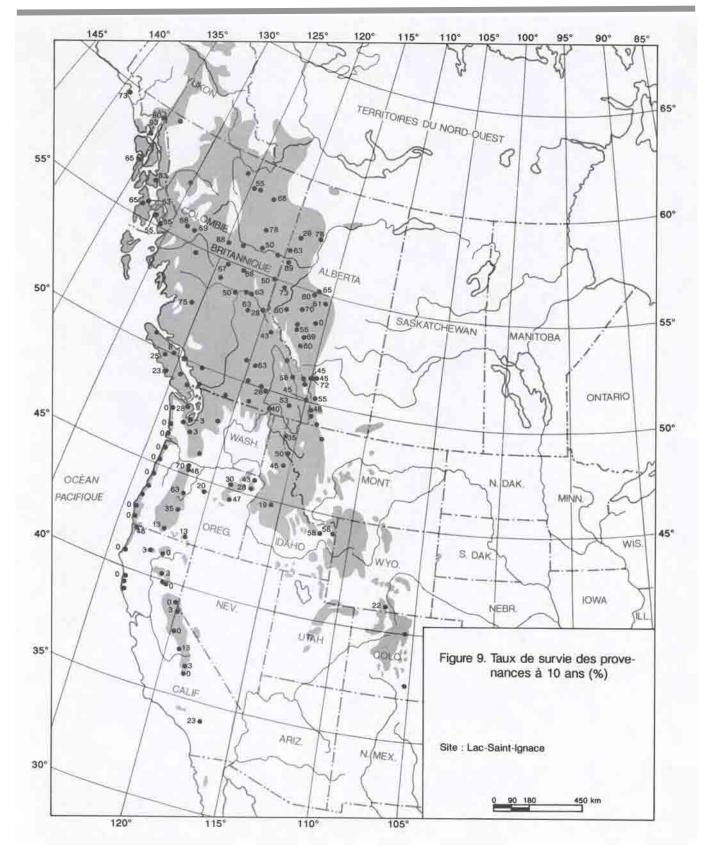
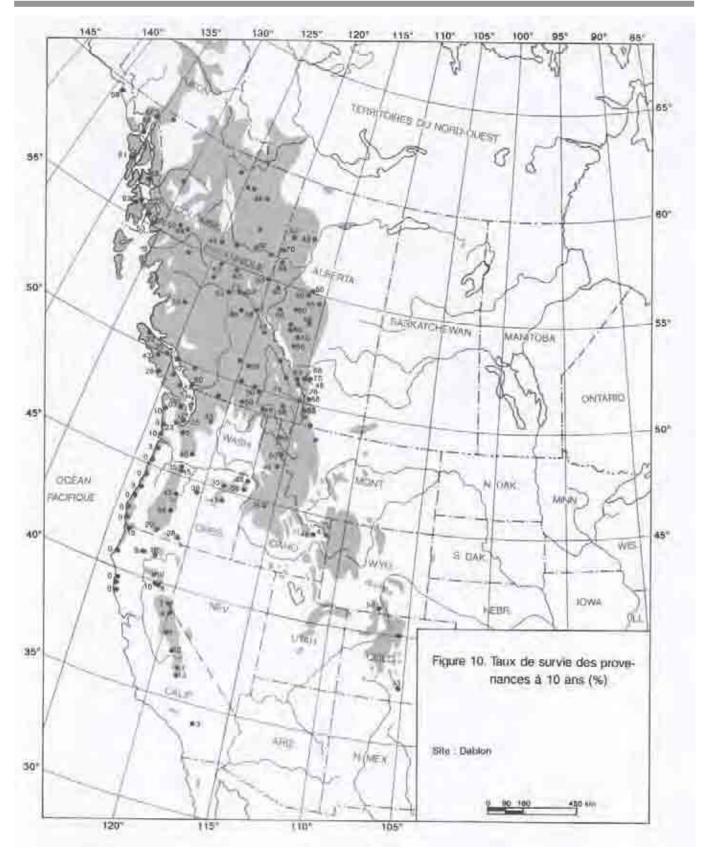
	4	Provenance	Ф					Taux	Taux de survie (%) et sites d'expérience ²	(%) et site	s d'expér	ience ²			
N° SH	Variété ¹	Lat. (nord)	Long. (ouest)	# (E)	동	LAB ¹³	IGN IGN	DAB	GAS	BON	PAH	PAT	LOT	VER	IMA ¹²
034	1	44°29°	120°25'	1 333	+0	18	20	38	72	09	75	38	73	45	38
090	-	44012	111,006	2 024	Ø	2	28	43	88	65	99	64	22	53	22
1 072	-	44,00,	112,000	2 286	က	20	28	48	80	28	28	58	22	43	20
101	-	40°12'	107°00′	7,00	10	18	22	28	75	20	89	42	65	20	45
660 1	-	40,05,	105°33°	3 250	ω	15		4	:	77	3	45	73	30	9
1000	-	37°35'	105°13'	2 950	0	80		33	92	92	38	25	45	28	20
896	-			3	00	28	10	43	75	43	35	28	65	40	48
696	0	59°30'	139°10'	45	35	22	73	28	88	78	73	78	09	53	65
970	O	59°27	135°18'	30	25	40	80	55	95	85	09	73	80	48	09
971	O	58°27"	135°45	2	33	40	93	89	85	86	89	73	83	28	80
972	O	57004	135°21'	30	20	35	65	61	06	93	78	89	89	73	83
973	O	56°47"	132°58'	23	28	23	63	89	75	94	85	85	90	20	83
1 055	O	55°40'	132045	89	20	35	63	70	80	93	75	63	78	73	99
1 056	U	55°34'	133°03'	30	23	100	92	63	85	93	8	83	83	89	75
1 057	Ü	55°22'	131°42'	23	ထ	20	55	53	90	80	63	73	83	45	89
974	O	55,03	131°35'	33	13	35	55	89	93	82	93	82	78	75	63
1 075	O	50°40'	127°22	23	*0	12.	1	33	75	78	09	53	88	23	28
1 076	O	50,01	124°46	136	3	2	ī	2	22	40	2	99	65	32	65
1 050	O	49°59'	125°29'	288	m	œ	8	35	65	81	28	22	80	28	63
1051	S	49°54'	123°10'	424	7	3	1	2	35	ş	;	63		48	**
1 004	O	49046	126°03'	91	TO.	Ŋ	1	43	75	26	22	53	73	22	20
1 077	O	49°22'	124°32'	19	Ť		1	20	45	92	28	28	09	40	18
1 078	O	49°09'	123°06'	9	3	***	1	20	62	69	29	75	85	75	20
1 079	0	49°05'	125°47	23	n	ιΩ	23	28	89	99	75	89	63	78	80
1 080	O	48°55'	123°45	19	3	3	7	3	40	40	28	09	83	53	36
1 012	O	47057	123°16'	1 667	8	30	28	63	93	73	78	88	65	90	75
1 062	0	47038	124°18'	30	0	2	0	10	53	40	43	45	09	53	53
1 028	O	47°25	122°40'	9/	+0	0	က	25	33	38	15	22	78	99	43
1 063	O	47014	123005	61	7	0	3	23	53	20	40	55	92	45	35
1014	O	46°53	124007	5	0	0	0	က	40	18	18	13	40	33	23
1 064	0	46°26	124003	15	0	0	0	10	48	38	80	23	49	35	48
1 065	C	45043	123°56'	15	*0	0	0	0	8	13	C	13	30	32	28
1 066	0	45013	123°57	15	က	0	0	0	25	23	20	28	15	30	09
1 019	O	44°34'	124004	15	0	0	0	0	12	10	ın	2	33	30	38
1 067	O	43°50	124,09	15	0	:1	4	3	13	13	48	80	23	10	23

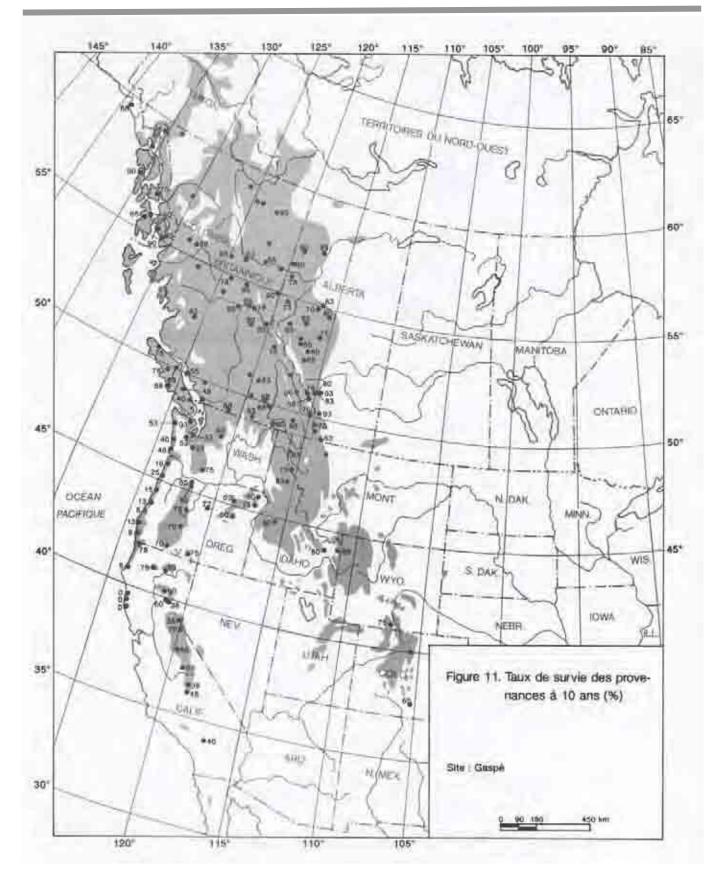
Tableau 4 (fin). Situation géographique et taux de survie des provenances à 10 ans à chaque site d'expérimentation

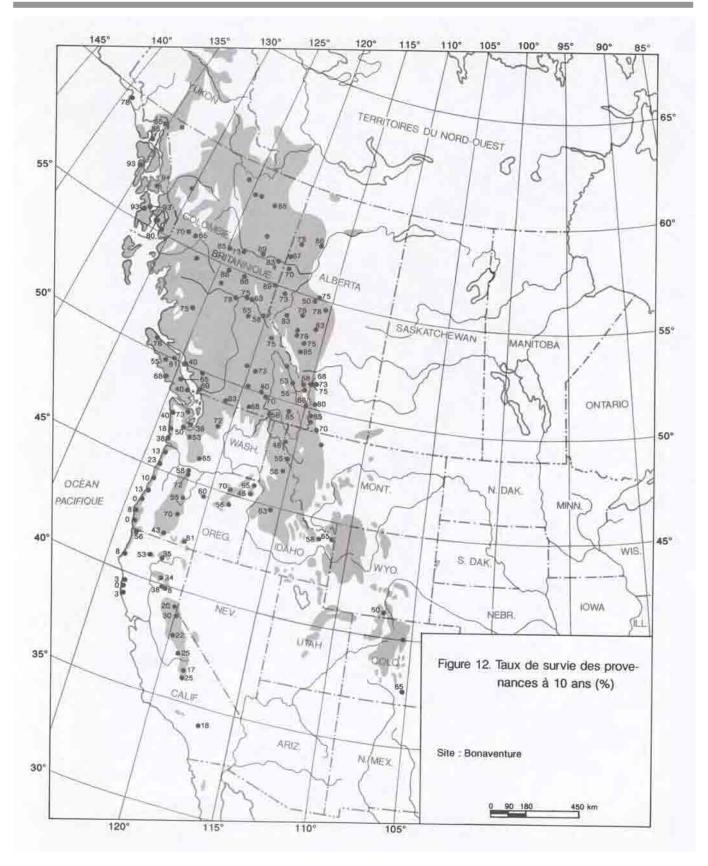
								1	2000000	ומחץ חב שחואוב (יע) בו שובש ח בצלובוובווכב	ים מבעלים	מוכב			
N° SR	Variété ¹	Lat. (nord)	Long. (ouest)	(m)	품	LAB ¹³	IGN	DAB	GAS	BON	PAR	PAT	LOT	VER	IMA ¹²
890	O	43030	124014	15	0	:	:	0	5	0	8	15	20	13	13
690	C	45°46'	124°31'	15	0	0	0	0	13	00	10	0	0	Ť.	25
070	C	42015	124°24"	15	0	0	0	0	00	0	co	n	0	10	0
022	O	41°50'	123°53	1091	23	25	48	15	78	26	55	53	22	40	70
025	O	40047	124°13'	5	0	0	0	0	2	00	0	0	0	0	2
013	Ш	47047	120°56'	758	:	25	÷	43	83	72	9	58	78	78	28
015	m	46°50°	122°36'	136	0	0	က	2	33	53	43	20	53	28	23
016	ш	46,04,	121°27′	1 212	23	28	40	40	75	92	80	55	82	20	53
017	m	45°23'	121°52'	545	00	38	20	32	65	28	78	63	78	89	28
018	ш	45°18'	121°45'	1 273	Ξ	35	48	45	09	72	20	75	78	23	78
020	ш	44,08	121°38′	1 697	00	10	63	43	78	22	22	38	75	20	92
021	ш	43°19'	121°39'	1 667	S	20	35	58	70	20	26	20	78	09	55
35	ш	42°23	122012	1 500	0	00	13	20	20	43	20	33	70	53	09
936	ш	45018	120°47	1 606	0	80	3	28	75	81	20	20	53	20	58
023	w	41016	121°55'	1212	0	0	0	9	69	35	53	35	20	33	28
)24	ш	41013	122°30'	2 121	0	0	က	2	75	23	23	30	20	43	38
337	ш	40°21	121°29'	1 485	0	0	က	10	09	34	30	33	43	30	33
326	E	39°53'	121007	1 636	9	***	:	10	09	38	43	17	48	28	20
038	ш	39°53'	121,08	1 606	2	0	0	တ	38	80	48	15	25	5	40
073	m	39°13'	120012	1 818	0	8	0	က	35	20	'n	25	48	39	30
040	ш	38°48'	119°58'	2 333	0	0	က	2	70	30	38	33	38	30	09
041	ш	37°51'	119°40'	2 394	ო	0	0	ĸ	9	22	33	15	40	00	48
045	m	37011	119012	2 182	က	0	13	10	63	25	23	40	30	28	35
043	ш	36°27	118°36'	2 394	0	0	က	က	38	17	8	15	18	10	35
044	ш	36,06,	118°32'	2 152	0	0	0	5	48	52	32	48	43	20	30
045	ш	34013	116°59'	2 333	0	80	23	က	40	18	20	9	33	ω	43
039	q	39°29'	123°48°	15	0	0	0	0	0	က	00	0	0	0	0
071	q	39°25'	123°50'	15	3	3	ł	:	0	0	0	0	0	co	0
074	Q	380587	123042	30				c	c	c	c	(6

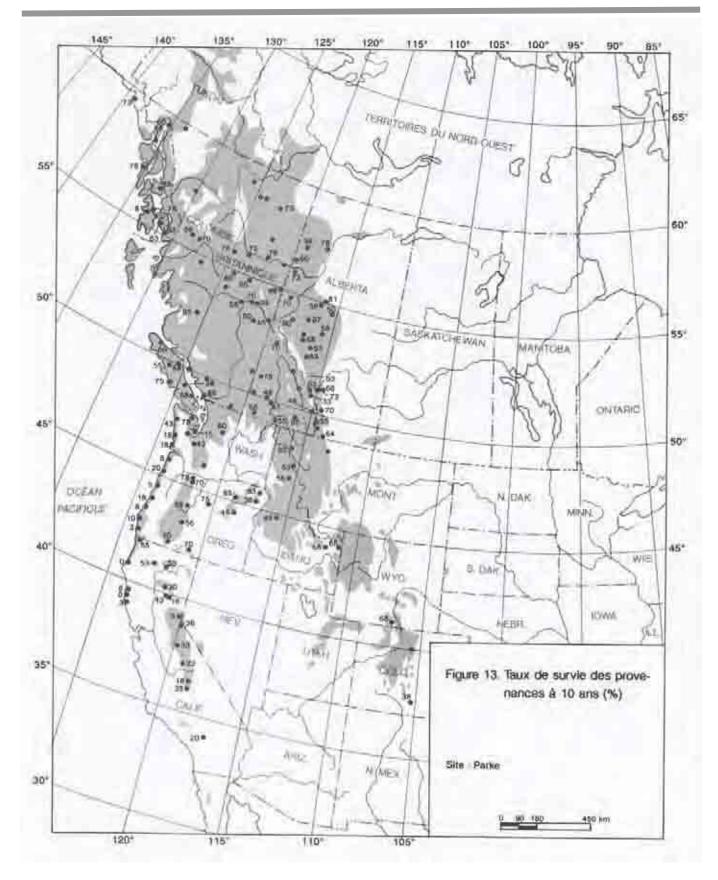
Variétés: latifolia (I), contorta (c), murrayana (m) et bolanderi (b).
 Sites d'expérience: Chibougamau (CHI), Labrieville (LAB), Lac-Saint-Ignace (IGN), Dablon (DAB), Gaspé (GAS), Bonaventure (BON), Parke (PAR),
 La Patrie (PAT), Lotbinière (LOT), Verchères (VER) et îles-de-la-Madeleine (IMA).

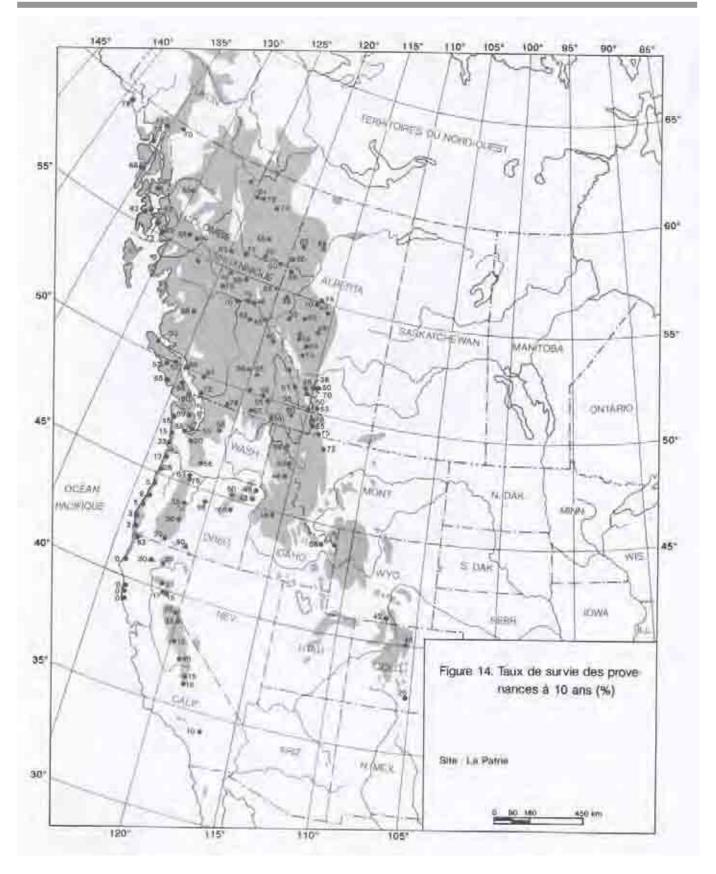
12 Prise de données à 12 ans.
13 Prise de données à 13 ans.
Prise de données sur 24 arbres.
† Prise de données sur 28 arbres.

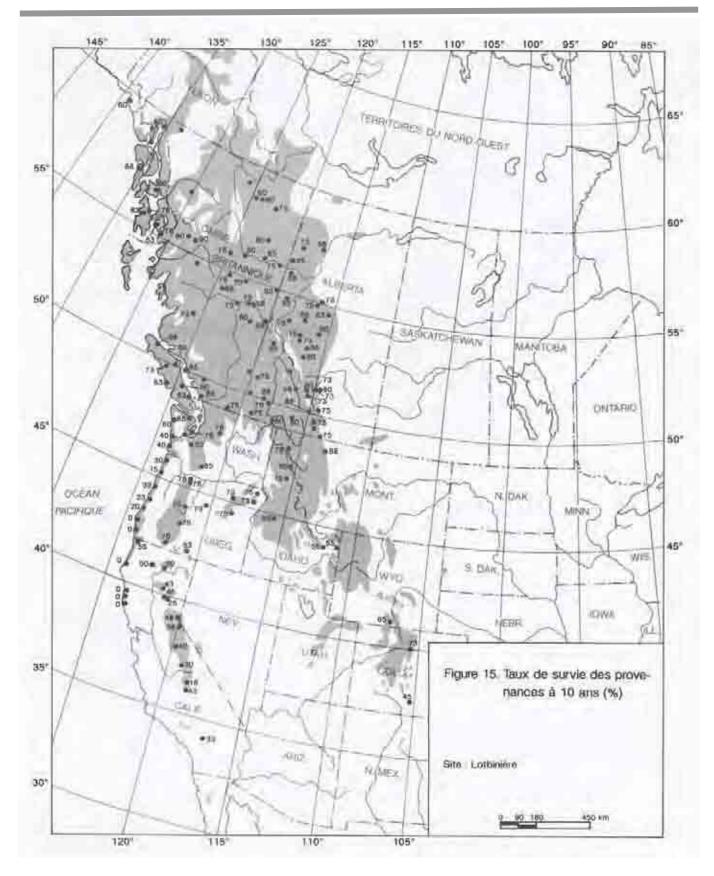






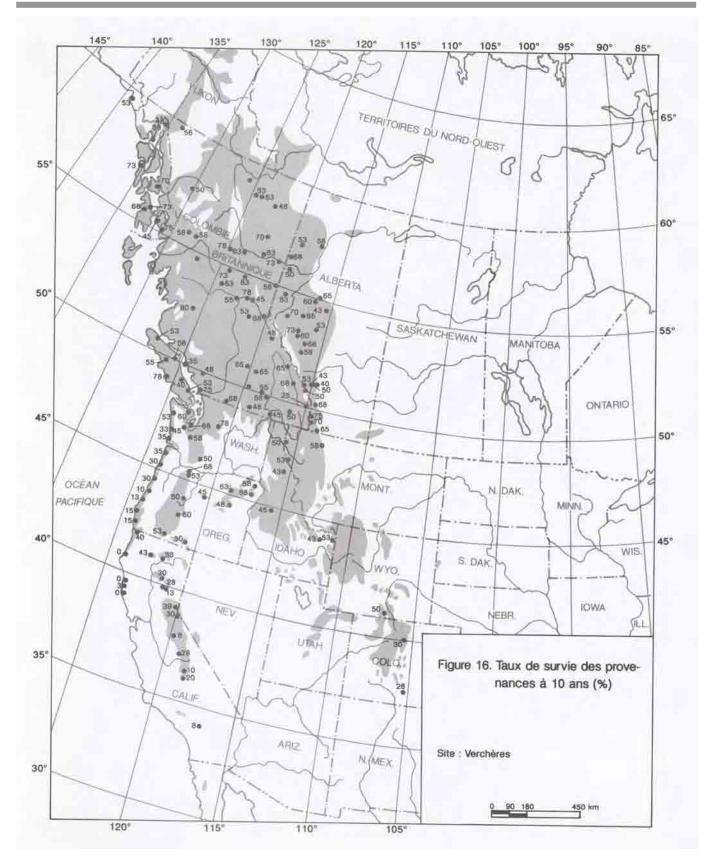

Figure 6. Montalité à chaque site d'experience.

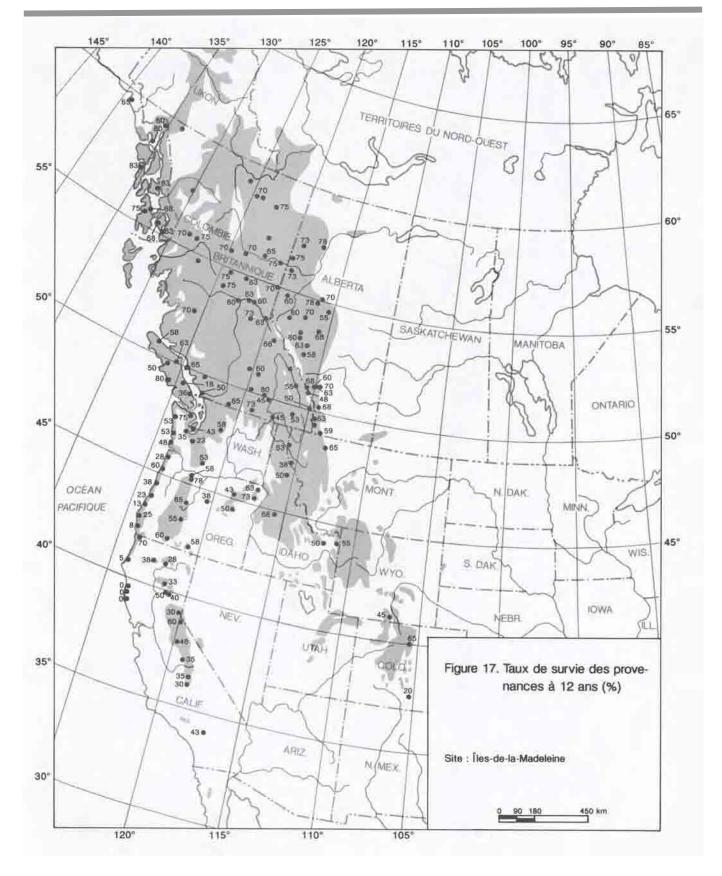


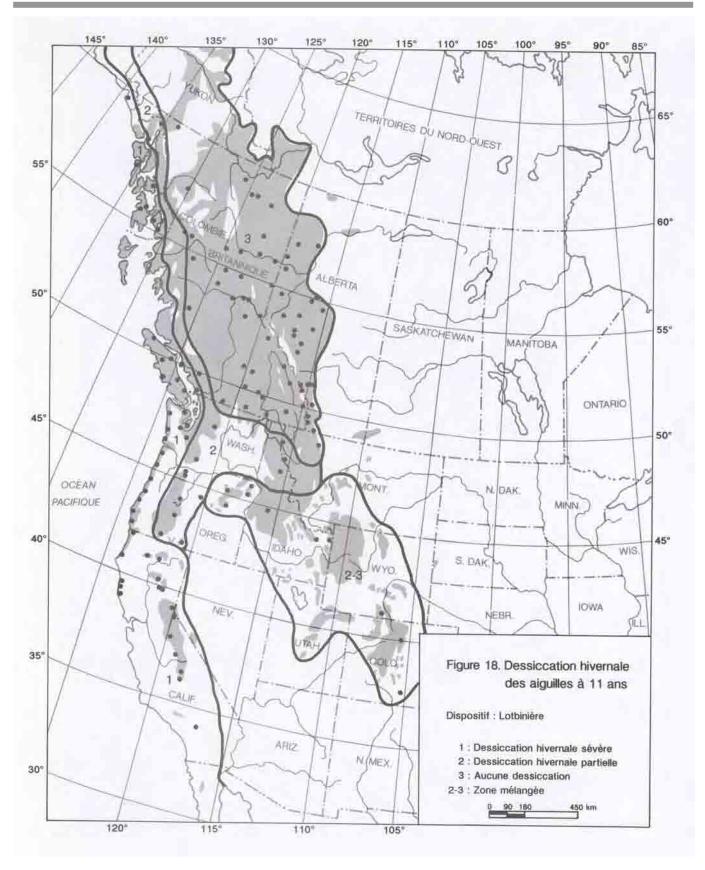












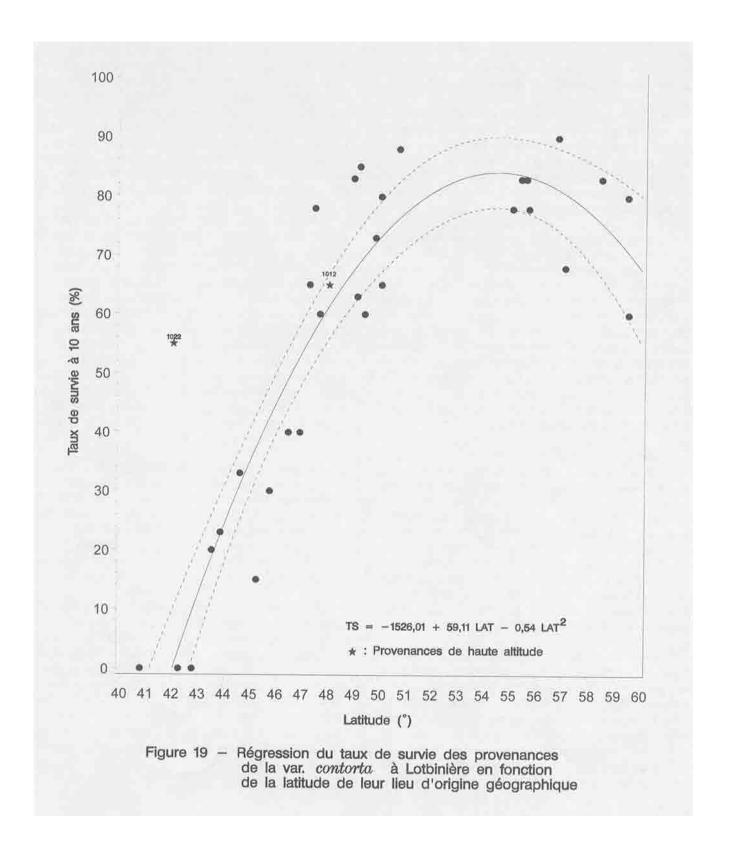
Lotbinière (figure 19). La courbe de régression de Lotbinière a été calculée sans les données des provenances n°s 1012 et 1022 à cause de l'altitude élevée de ces provenances par rapport aux autres. La courbe montre que le taux de survie est égal à zéro à une latitude d'environ 42° et qu'il augmente progressivement avec une augmentation de la latitude, jusqu'à un point optimum. Le point optimum du taux de survie, qui est de 84 %, se situe à une latitude d'environ 54° 30'. Du point optimum à une latitude de 59° 30', le taux de survie diminue progressivement.

À Chibougamau, Labrieville, Lac-Saint-Ignace et Dablon, le taux de survie des provenances de la variété *contorta* diminue progressivement, avec une diminution de la latitude, jusqu'à une valeur de zéro, valeur atteinte à une latitude d'environ 45° à Dablon, 47° à Lac-Saint-Ignace et 47° 30' à Labrieville et Chibougamau.

Les provenances de la variété *contorta* ayant le meilleur taux de survie, sur tous les sites, sont situées dans la partie nord de l'aire de distribution de cette variété. Toutes les provenances de cette variété poussent sous un climat tempéré océanique. Le climat reste doux à l'année à cause de la proximité du Pacifique; le gel est rare dans la partie sud de l'aire mais la température peut atteindre –15 °C dans la partie nord (LAMOUREUX *et al.* 1993); ce qui pourrait expliquer le meilleur taux de survie des provenances dans la partie nord de l'aire. Sur les sites de Chibougamau et Labrieville, le meilleur taux de survie, à chaque endroit, ne dépasse pas 35 et 40 %.

L'altitude élevée de deux provenances (n° 1012, 1667 m et n° 1022, 1091 m), par rapport à celle des provenances voisines (± 30 m), a une influence positive marquée sur le taux de survie (tableau 4, figures 7 à 17). En général, pour les sites concernés, la différence du taux de survie de ces deux provenances avec chacune des provenances voisines correspondantes est moins élevée pour la provenance n° 1012 que pour la provenance n° 1022. D'après YING (1991), l'influence de la différence d'altitude des provenances sur le taux de survie décroît avec l'accroissement de la latitude.

Le taux de survie des provenances de la variété *murrayana* varie de façon significative, sur chaque site, entre les provenances. Pour les sites de Gaspé, Bonaventure, Parke, La Patrie, Lotbinière, Verchères et les Îles-de-la-Madeleine, le taux de survie baisse progressivement avec une diminution de la latitude. La courbe de régression de Lotbinière (figure 20) montre qu'il y a une relation linéaire entre la latitude des provenances et le taux de survie. À Lotbinière, le


coefficient de corrélation entre la latitude et le taux de survie des provenances est de 0,83; la variation de la latitude explique 69 % de la variation du taux de survie des provenances. Bien que le taux de survie des provenances, à Gaspé et aux Îles-de-la-Madeleine, baisse avec une diminution de la latitude, la relation est moins significative entre ces deux variables.

Pour les sites de Chibougamau, Labrieville, Lac-Saint-Ignace et Dablon, le taux de survie des provenances de la variété *murrayana* diminue avec une diminution de la latitude pour atteindre un plateau à une latitude d'environ 41° à Dablon, Lac-Saint-Ignace et Labrieville et à une latitude d'environ 42° à Chibougamau. À Chibougamau et Labrieville, seulement quelques provenances ont un taux de survie supérieure à zéro et le taux de survie le plus élevé à chacun de ces deux endroits ne dépasse pas 23 et 38 %.

L'altitude plus élevée des provenances dans la partie sud de l'aire de distribution de la variété *murrayana* a peu d'impact positif sur leur taux de survie. La diminution de la latitude et la proximité de la zone à climat tempéré chaud méditerranéen peut exercer une influence négative sur la survie de ces provenances. La dessiccation hivernale partielle des aiguilles à une latitude de plus de 41° devient sévère à une latitude de moins de 41° (figure 18). La faible altitude de la provenance n° 1015 (136 m) affecte de façon négative son taux de survie sur tous les sites; cette provenance est affectée par une dessiccation hivernale prononcée. La courbe de régression de la figure 20 a été calculée sans les données de la provenance n° 1015.

Le taux de survie des provenances de la variété latifolia varie de façon plus ou moins significative, à chaque site, entre les provenances. De façon générale (figures 7 à 17), on remarque que les provenances situées dans le sud de la Colombie-Britannique ont un taux de survie plus faible qui devient davantage évident sur les sites de Chibougamau et Labrieville où les conditions climatiques sont plus sévères.

La variation de la latitude, de la longitude et de l'altitude des provenances de cette variété est plus importante que pour les trois autres variétés. L'interdépendance de l'altitude, de la latitude et de la longitude sur plusieurs variables liées à la croissance et la sensibilité au froid de populations de *Pinus contorta* variété *latifolia* situées dans la partie sud de l'aire de cette variété (Idaho, Wyoming et Utah) a été démontrée (REHFELDT 1988). À Lotbinière, la latitude, la longitude et l'altitude des provenances expliquent respectivement 17, 23 et 24 % de la variation du taux de survie.

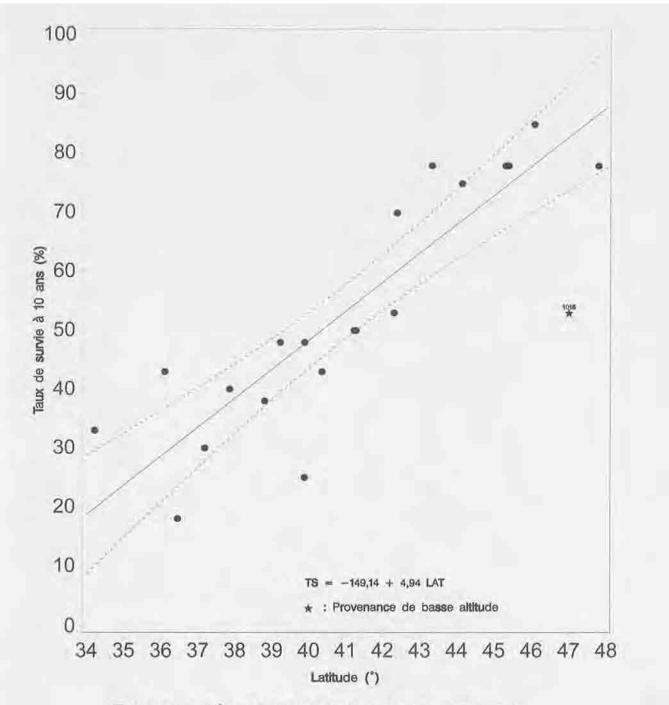


Figure 20 - Régression du taux de survie des provenances de la var. murrayana à Lotbinière en fonction de la latitude de leur lieu d'origine géographique

3.2 Hauteur

3.2.1 Variation entre les sites

La hauteur moyenne par provenance, sur chaque site, a été calculée à partir de 14 arbres et plus. Ce nombre minimum d'observation a été fixé arbitrairement. Pour comparer la hauteur moyenne entre les sites, nous avons utilisé les provenances communes aux sites. Les sites de Chibougamau et Labrieville ont été groupés ensemble à cause du faible taux de survie des provenances; les neuf autres sites ont été comparés entre eux. À Chibougamau et Labrieville, les 14 provenances communes sont toutes de la variété *latifolia* tandis que pour les neuf autres sites les 49 provenances communes comprennent 38 provenances de la variété *latifolia*, sept de la variété *contorta* et quatre de la variété *murrayana*.

La hauteur moyenne à 10 ans, entre les sites, varie de façon significative. Pour les sites de Lac-Saint-Ignace, Gaspé, Bonaventure, La Patrie, Lotbinière et Verchères, elle est de 238, 227, 258, 260, 241 et 233 cm; la hauteur moyenne est plus faible à Parke (214 cm) et beaucoup plus faible à Dablon (169 cm) et aux Îles-de-la-Madeleine (178 cm à 12 ans, hauteur estimée à 10 ans de 135 cm). À Parke, la croissance a été ralentie dans les blocs 5, 10 et surtout 6, à cause d'un drainage modéré. Dans son aire de distribution, Pinus contorta peut croître sur une grande variété de sols et on le retrouve souvent sur des sols humides mais sa croissance est meilleure sur les sols qui se situent généralement à mi-pente, dans les terrains accidentés où la pierrosité peut être parfois forte et le drainage bon (LOTAN et CRITCHFIELD 1990 dans BURNS et Honkala 1990). À Dablon, les facteurs limitatifs de la croissance sont le drainage modéré dans les blocs 9 et 10, mais surtout la présence d'une végétation herbacée compétitive assez dense, dans tous les blocs, au cours des premières années de croissance. Aux Îles-de-la-Madeleine, les conditions climatiques particulières et le degré d'exposition des arbres aux vents exercent une influence prépondérante sur la croissance. Les arbres dans les blocs 8 à 10 sont moins exposés au vent et leur hauteur à 12 ans (200 cm) est supérieure de 35 % à la hauteur mesurée dans les blocs 1 à 7 (148 cm).

À Chibougamau, la hauteur moyenne à 10 ans des 14 provenances de la variété *latifolia*, communes à Labrieville, est seulement de 100 cm. La sévérité des conditions climatiques de croissance est la cause principale de la faible hauteur sur ce site; le sol sablonneux et le drainage bon sont au contraire favorables à la croissance de l'espèce. À Labrieville, la hauteur moyenne estimée à 10 ans de ces 14 provenances est de 180 cm (286 cm à 13 ans). La hauteur estimée à 10 ans a été déterminée à partir de données de

hauteur à 1, 5 et 13 ans. Pour établir une relation entre la hauteur mesurée à Chibougamau, estimée à Labrieville et mesurée à 10 ans sur les autres sites, mentionnons qu'à Lac-Saint-Ignace, la hauteur moyenne de ces 14 provenances est de 267 cm à 10 ans.

3.2.2 Corrélation hauteur-âge

Après 2 ans de croissance en pépinière, la hauteur moyenne des plants (2-0) des 134 provenances variait entre 10 et 23 cm (moyenne 14 cm) et celle des plants (3-0) variait entre 15 à 44 cm (moyenne 27 cm). Plusieurs provenances côtières de Colombie-Britannique (nºs 1076 et 1078), de l'état de Washington (nos 1028, 1014 et 1063), de l'Orégon (nos 1068 et 1069) et une provenance intérieure de Washington (n° 1015) étaient, celles qui avaient les meilleures hauteurs. Après quelques années de croissance en plantation, les arbres de ces provenances ont été sérieusement affectés par la dessiccation hivernale répétée des aiguilles, ce qui a eu comme conséquence de ralentir leur croissance en hauteur. En pépinière, la couche de neige offrait une protection suffisante aux plants contre le gel des bourgeons et la dessiccation hivernale des aiguilles. En plus du risque du défaut d'adaptation des provenances en plantation, la hauteur des plants en pépinière peut être influencée par la masse des graines et la croissance polycyclique des plants (YING et al. 1989). En accord avec La Farge (1975), Lambeth (1980), Magnussen et YEATMAN (1986), nous avons constaté que la hauteur des plants à l'âge de 1 ou 2 ans, en pépinière, n'est pas un indicateur sûr pour prédire la croissance subséquente des arbres, particulièrement dans le cas d'espèces exotiques.

La variation de la hauteur entre les provenances augmente avec l'âge des tests. Le coefficient de corrélation entre les hauteurs moyennes des provenances à 5 et 10 ans, à chaque site, est beaucoup plus élevé qu'à 1, 2 et 10 ans (tableau 5). Les conditions de croissance au lieu d'origine des provenances sont très variables de sorte que sur un site donné, où la croissance d'un bon nombre de provenances s'effectue normalement, la sélection précoce des provenances pourrait se faire entre 6 et 10 ans. Excepté pour les sites de Chibougamau, de Labrieville et les Îles-de-la-Madeleine, la hauteur moyenne des provenances à 5 ans explique de 44 à 74 % de la variation de la hauteur moyenne des provenances à 10 ans. Les coefficients de corrélation plus faibles aux Îles-de-la-Madeleine, Labrieville et Chibougamau montrent la nécessité d'une période plus longue pour l'expression de l'adaptation des provenances. D'après LAMBETH (1980), la sélection précoce de plusieurs espèces de conifères peut être efficace

Tableau 5. Corrélation entre la hauteur moyenne des provenances à 10 ans et les hauteurs moyennes à 2 et 5 ans

Hauteur moyenne à 10 ans	Hauteur moyenne à 2 ans	Hauteur moyenne à 5 ans
Chibougamau (24provenances)		0,56 (0,0043)
Labrieville ¹³ (41 provenances)		0,59 (0,0001)
Lac-Saint-Ignace	0,20 ¹	0,82
(81 provenances)	(0,0665)	(0,0001)
Dablon	0,43	0,80
(101 provenances)	(0,0001)	(0,0001)
Gaspé	0,45	0,66
(114 provenances)	(0,0001)	(0,0001)
Bonaventure	0,45	0,77
(115 provenances)	(0,0001)	(0,0001)
Parke	0,40	0,80
(112 provenances)	(0,0001)	(0,0001)
La Patrie	0,46	0,86
(127 provenances)	(0,0001)	(0,0001)
Lotbinière	0,57	0,84
(119 provenances)	(0,0001)	(0,0001)
Verchères	0,60	0,85
(131 provenances)	(0,0001)	(0,0001)
Îles-de-la-Madeleine ¹²	0,006 ¹	0,36
(119 provenances)	(0,9451)	(0,0001)

La valeur entre parenthèses dans la colonne centrale et celle de droite correspondent au seuil de signification observé.

seulement après qu'un laps de temps suffisant se soit écoulé pour permettre un ajustement des provenances aux conditions environnementales du lieu de plantation et pour diminuer l'effet maternel et celui de la pépinière. D'après YING et ILLINGWORTH (1986 dans YING et al. 1989), la croissance commence à se stabiliser après 6 ans de croissance en plantation et la sélection des provenances de *Pinus contorta* ne devrait pas se faire plus tôt, particulièrement si l'espèce est introduite.

3.2.3 Variation entre les provenances

Une différence significative a été trouvée entre les hauteurs moyennes des provenances sur chaque site. La hauteur moyenne des provenances, à 10 ans de croissance en plantation, est présentée au tableau 6, par variété et dans un ordre décroissant pour la latitude. Le nombre minimum d'observations pour comparer la performance en hauteur des provenances a été fixé à 14 après un examen complet des données.

¹ Corrélation avec la hauteur à 1 ans.

¹² Corrélation avec la hauteur à 12 ans.

¹³ Corrélation avec la hauteur à 13 ans.

	п	Provenance	aous							Sites d'e	Sites d'expérience ²	04				
					C	CHI	3	LAB ¹³	5	NE	D	DAB	Ö	GAS	B	BON
N° Van	Vaniété (r	(nord)	Long.	(m)	in d	, c	2	ć	2	4	١	1 5	-	1	1	
875	1 5	59048	133947	782						7	100	1				2
976	1 5	59,03	125046	848	8	77										
977	5	58940	124°10	758	8 1		Fi IB				1				±	8. 1
878	1 5	58,33	12446	1167	16	18	256	17	258	22		0 1		1		1
979	9	58,35	122342	455	119	7	293	O.	274	27	205	55	249	38	266	34
980	2	57°29	130013	158			İ									8
800	un -	57"23	117,33	712	122	10	310	20	283	15	222	17	243	38	275	80
683	1	57910	119908	758	145	43	256	++	258	9	222	20	250	320	261	Į.
890	- 32	57,000	122,24	1106	125	15	239	16	278	31	190	-				
1084	2	56730	119950	727	103	th3	308	42	38	52	204	28	256	32	268	22
981	1 5	56,02	122,05	721	132	2.0	312	24	245	40	246	24	237	34	287	8
982	5	56,01.	120037	788	137	16	286	61	1						284	1 12
983	9	55°57	123048	682	1								279	33	SOR	8
085	5	55,54"	119030	803	125	13	304	23	261	35	208	23	231	3.5	254	38
984	(C)	55,48	124,48	758	105	17	334	23	278	38	224	6	245	34	284	F
985	10	55,38	127054	909	61	18	218	10	225	R	28	23	242	38	258	28
986	9	5,37	128°38'	303	73	1	173	13	214	27	170	23	233	8	285	28
1094	9	55,017	115014	1001	131	00	270	16	264	83	234	22	238	8	274	30
987	- P	54,56	120015	948	123	23	284	20	229	20	210	24	265	38	282	32
1095	19	54°50'	116,34	1061	136	13	312	Į.	281	24	231	20	240	28	283	20
989	iù /	54,48	124018	939	63	9	299	28	290	24	206	25	237	3	282	60
988	2	54,48	122,51	893	61	60	310	23	282	22	238	55	265	38	288	m
1098	ıń.	54,40	119007		150	14	325	1.7	227	53	198	16	217	500	283	25
066	4	54,39	127003	515		0	- 99	1		5				-		
1092	19	54,35	115,30	1001	115	8	325	1	305	23	190	18	251	24	275	28
1059	5	54,01	124,35	727	9		1	i		1		-				
1086	in -	54,00.	117010	1136	107	9	253	9	311	28	181	23	268	34	270	F
1001	(4)	53,54	122,00	585	32	60			- 19		227	83	224	900	259	30
166	iń	53,55,	121,44	833	132	12	210	53	264	13	224	17	234	ŧ.	257	25
1087	15	53,48	118930		106	44	244	9	241	20	198	10	241	01	253	8
365	in .	53,38,	122°58	818	68	62	284	53	270	50	225	70	585	65	325	m
1093	19	53,35	115055		103	17	309	0		-	231	27	249	30	281	18
993	14	53,52,	120,20	597	80	102	248	60	272	0	224	23	281	50	304	8
MASS	-	120000	A to rection and	A to be seen										-		

	Δ.	Provenance	0						Sites d'ex	Sites d'expérience ²	O.			
					d	PAR	d.	PAT	5	TOT	W	VER	=	IMA 12
z	Variété	Lat	Long	AR	3	13	1	1	4	1 5	9			1
		(cocco)	(neann)	70.0	-	44	E)		100	Bo	100	10	00	· D
875	-	59.48	133°47"	782	17	×	218	28	4	+	213	18	×	ě
976	1	89,03.	125,46	848	1	-	4	þ		, R	177	00	6	i e
277	1	58°40	124,10	758	· ·	7	265	30	227	35	238	58		i
878	1	58,33,	124,48	1167	1	0	213	33	205	24	208	10	186	28
679	1	58,35.	122042	455	238	50	260	59	223	30	220	01	184	27
980	-	57°29'	130,13	811		1	281	8			228	20		1
8001	1	57°23	117°33	712	248	33	275	26	225	34	291	2	237	31
083	-	57,10	119,08	758	264	10	267	28	242	29	252	2	181	53
058	1	22,00	122024	1106	100	×	246	27	215	325	248	28		
084	-	56,30	119°50'	727	257	38	308	20	249	26	247	27	205	30
186	-	56,05	122,05	721	258	30	271	32	272	33	248	53	211	26
982	-	56,01.	120037	788	2		281	24	283	30	273	20	214	30
983		55°57"	123°48'	682	286	30	311	30	5	Si	286	53	188	28
085	-	55°54"	119930	803	248	53	310	33	250	27	199	50	170	53
984	-	55,48	124049	758	259	5	289	52	250	3	244	69	158	28
985	-	55,38,	127054	608	233	28	238	24	280	36	278	33	171	30
986	-	55,37	128,38	303	225	27	286	53	254	35	252	53	180	28
094	-	55,01,	116014	1091	256	묎	285	30	269	31	273	56	195	28
987	-	54056'	120015	948	230	27	272	34	264	37	232	83	235	28
980	-	54,20,	116°34'	1001	215	23	315	28	268	30	252	24	185	31
986	_	54,43	124016	939	251	33	274	5	253	31	247	53	172	30
988	4	54,49	122051	693	275	8	313	27	278	28	290	83	162	33
860	1	54°40'	119907	:	248	28	283	53	237	34	240	8	186	24
990	2	54,38,	127,09	515	Y			-	÷	7.	310	ı,	100	/1
095	_	54,35	115,30	1061	236	20	293	17	226	25	233	17	186	22
059	-	54,011	124,32	727	310	1	327	30	268	35	27.1	52	185	27
980	-	54,000	117010	1136	231	24	292	24	237	26	239	26	181	28
1901	1	53054	122,000	687	237	28	284	30	254	30	270	31	169	25
166	-	53,25	121°44°	833	249	22	314	19	288	27	23	18	171	24
1087	-	53,48	118030		225	35	281	23	254	31	240	28	225	24
992	1	53,39,	122°58'	818	259	23	293	28	294	30	270	22	186	24
1093	-	53,35	115,65	:	228	23	270	58	250	35	257	23	172	27
993	_	53,25	120°20′	697	246	18	262	60	288	27	270	27	149	52
STEVE		- Separate	A complete on a	-			1							

		Provenance	ance							Sites d'e.	Sites d'expérience ²					
					0	CHI		LABIT)j	IGN	DAB	18	9	GAS	Ä	NON
	Varieté		Long	Alt.	8											1
SH		(nord)	(onest)	(u)	H.	u	ď	ď	4	c	c	u	É	14	N.	Ė
994	-	53,08	121,33	1106	66	11	234	11	249	.25	179	24	258	36	275	26
1009	-	53,05	117011	1394	105	10	297	151	266	22	195	24	262	34	269	25
9601	~	52050	116,28	8	109	12	277	16	294	18	227	20	233	32	269	30
988	-	52"35"	119010	670	54	10	270	(0	299	¥	219	23	277	31	311	27
966	~	52,30	125,48	1303	20	5	268	18	23	12	200	20	245	33	280	30
1097	_	52,24	116,37		84	10	273	24	266	24	232	20	255	26	275	ř
282	_	51,31	112211	939	-	- 0)			1	, X	199	ī	2			7
1601	-	51,05	114946	1515	103	4	252	23	253	50	197	30	248	37	263	28
10101	-	51,05	115002	1394	11	10	287	83	289	83	206	23	246	32	270	27
1047	-	51,001	1150027	1485	58	18	276	8	267	58	203	18	263	33	258	30
866	-	50"58"	120°20	1023	100	10	,	9	-	,					-	
0601	-	50,28	115044		88	Ø.	209	121	206	N	169	10	218	(7)	254	Ď.
666	-	50,46	116,26	1167	1	1				-		-	979	8	359	in
1049	-	50,43	119027	1515	93	Q.	312	(3	295	52	230	50	238	£3	300	28
0003	_	50031	115044	1030		0	,	7			248	=	311	21	320	8
1088	-	50,13	114,28	101	103	17	303	20	238	8	176	23	234	253	257	8
1001	-	50,03	119039	1001			The state of	-	7.000							1
1002	-	50,05	118734	1130		7							268	35	289	9
1053	1	49,83,	114756	1273	178	ın	270	4.7	244	18	222	30	244	88	978	27
1003	-	49,24	118012	578	23	(0)	233	10)	233		220	8	252	53	325	8
1005	_	49,34	118904	1652	96	0	259	11	280	62	193	83	269	35	305	6
1089		49,59,	114"28"		134	12	257	20	245	10	186	E)	234	28	284	8
1048	_	49,58	114,25	1364	:			-		1	100					
1006	-	49°11	117,38	385	58	cu	212	90	242	16	214	1.	251	24	338	2
1007	-	49,03	119011	1530			F				187	20	235	37	275	22
1011	_	48,04	113047	1842	:								230	33	242	200
1052	~	49,04	120046	1121	:	:		4	N				236	32	282	100
1081	_	48,30	113015	1424	82	10	202	14	-	ì		3				
1082	-	48,15	115,30	606	10	4	150	O	248	14	207	18	52	52	241	10
1027	-	47°22	115°24	939	1	0	243	00	258	20	190	53	204	62	262	22
1029	_	46,40	114,33	1333	69	4	250	14	13	18	149	18	188	52	246	83
1030	-	45,38	117716	1303	68	3	22	o	180	17	201	1	828	32	245	8
1031	-	45,19	117024	1515	48	2	243	v	182	1	133	22	196	30	267	00
1032	-	45,10	118,43	273		0	247	P	200	45	616	24.4	210	100	Service .	000

	d.	Provenance	ø						Sites d'ex	Siles d'expérience ²	DI.			
000	President	1	- Common	N.	P.	PAR	P	PAT	7	LOT	N	VER	ff.	IMA ¹²
E C	Verificite	(nord)	(ouest)	(m)	E	ė	£	ž	H	c	£	¥	£	u.
994	4	53,08,	121,33	1106	204	50	277	33	276	32	286	24	187	53
900	-	53,06,	112011	1394	202	27	260	8	225	29	205	24	203	32
960	-	52°50'	116°28'	12	227	52	285	10	265	35	263	27	214	33
985	7	52,32,	119010	970	272	28	296	24	281	34	323	19	147	27
966	,	52,30	125°48	1303	212	34	252	27	236	58	238	35	159	28
250	1	52024	116037	4	212	12	279	53	282	24	266	23	217	83
268	1	51,31,	117211	939	1	×	18	1		1	330	26	1	81
091	1	51,002	114046	1515	220	27	208	20	262	35	213	16	238	28
010	1	51,05	115,02	1394	221	52	265	13	244	53	208	17	249	24
047	1	51,011	115,02	1485	254	29	26.1	89	569	53	269	20	240	52
866	1	50,28	120,20	1023	*		337	8			316	26	10	
060	-	50,98,	115044		198	33	233	6	230	32	227	5	228	27
866	7	50,48	116°26	1167			34	38	298	32	305	27	161	22
949	1	50,43	119027	1515	259	28	306	83	288	30	272	28	169	24
000	1	50,31	115044	1030	256	13	279	20	301	53	286	20	155	61
880	7	50013	114°26		2	28	247	57	246	30	217	23	224	27
100	-	50,03	119,39	1061	-	***	370	CV	T	-1	326	167	K	I
005	7	50,05	118034	1130	569	19	310	83	292	3	237	22	167	32
063	1	46,28,	114055	1273	222	18	304	23	258	23	249	10	130	50
003	-	48°54	118012	576	245	1.	334	23	304	28	337	23	28	60
500		48,34,	115,04	1652	237	34	122	24	281	24	262	20	170	12
080	_	49°29"	114,28,	1	262	22	296	53	241	30	247	30	199	52
946	-	49,26	114°25°	1364	E	ě	310	28		*	286	28		-
900	7	49,11	117,85	992	266	23	295	io.	312	35	275	18	193	18
200		48°09'	119011	1530	223	27	240	50	265	30	255	50	192	28
011	-	48,04	113047	1642	198	53	247	30	228	30	213	26	223	18
062	-	49,04	120°46'	1121	Ţ	49	285	63	252	30	276	22	149	56
081	7	48,30,	113015	1424	7	199	210	26	206	27	155	23	190	38
82	-	48015	115°30'	606	225	12	284	20	305	33	291	50	147	52
027	-	47022	115,24	939	210	2	293	25	265	26	261	2	133	19
020	-	46,40	114,33	1333	2227	22	232	30	251	31	286	17	146	30
030	-	48,38	117016	1303	218	5	292	CD.	269	30	249	27	196	55
031	1	45,18,	117024	1515	188	15	287	17	218	58	243	27	160	87
1000		ARDAN	4400340	0000	000	200	000	000	400	200	0000	LC	1	-

Tableau 6 (suite). Situation géographique des provenances et hauteur à 10 ans à chaque site d'expérience

		Provenance	ance							Sites d'e.	Sites d'experience					
,					O	CHI	L)	LAB ¹³	E	IGN	DAB	8	Ö	GAS	Œ	BON
No No	Variété	Lat.	Long.	Alt	00	4										
		(nioin)	(pean)	(111)	CI.	-	117		TI.	II.	H,	000	n,	u,	ď	ď.
1054	,	44,48	115,48	1676	26	N	224	9	202	7	189	49	204	32	243	25
1033	7	44,35	118,34	1485	102	2	141	7	235	17	138	17	181	24	215	20
1034	1	44,59,	120°25°	1333	I	0	172	_	222	00	138	12	200	26	222	24
1060	-	44°12'	111,06	2024	62	-	159	N	223	23	173	17	202	35	205	26
1072	7	44,000,	112000	2286	52	-	158	80	147	23	129	10	172	32	190	23
1101	7	40012	107°00'	74	49	4	144	7	189	7	156	23	173	30	240	20
1099	7	40,05	105°33	3250	53	e	175	9								
1100	-	37035	105°13	2950	:	0	156	က	3	-;	171	13	187	26	230	26
896	1	:	77	3	9/	3	220	+	197	4	181	17	206	30	196	17
696	0	59°30	139°10'	45	42	14	118	8	155	59	105	23	157	35	190	3
970	0	59°27"	135°18°	30	09	10	222	16	219	32	137	22	183	38	239	34
971	0	58°27"	135°45	n)	47	13	129	16	178	37	129	27	176	34	244	31
972	0	57,04	135°21'	30	41	80	129	14	166	56	26	22	178	36	207	37
973	0	56°47	132°58'	23	21	1	129	0	176	25	107	27	206	30	235	34
1055	0	55,40	132°45	89	61	00	113	14	141	25	107	28	174	32	217	37
1056	0	55,34,	133,03	30	40	6	133	7	161	26	119	52	169	34	222	37
1057	O	55°22'	131042	23	26	က	100	80	153	22	110	21	170	36	179	32
974	0	55,03	131,35	33	45	2	108	14	137	22	06	27	179	37	185	34
1075	0	50,40	127,22	23	9	0	7.	0.00	(#	0	105	3	144	30	163	31
1076	O	50,01	124,46	136		1	180	÷	3	3.	;		179	22	258	16
1050	0	49°59'	125°29'	288	61	T	123	es	152	0	115	14	178	26	244	53
1051	C	49°54	123°10'	424	2	**			*		:		:	3		
1004	0	49,46,	126°03'	91	155	2	113	N	108	ß	114	17	185	30	209	20
1077	0	49°22'	124°32′	61			**	1:		1	107	80	175	9	188	26
1078	0	48,08	123,06	9	150	Ð	1	1.0	111	ŧ	06	50	153	25	226	25
1079	0	49,05	125,47	23	32	-	112	2	115	6	06	11	135	27	188	27
1080	0	48,22,	123,45	61	g	3	(#)	18	22	3	:	÷	178	16	230	16
1012	2	47°57	123,16	1667	54	7	169	12	187	10	133	25	204	37	230	29
1062	0	47,38	124°18	30	191	0	141	2	A	0	92	4	140	2	141	16
1028	0	47°25	122040	9/	:	0	100	0	65	+	102	10	166	13	186	15
1063	C	47014	123,05	61	:	380	3	0	3	3	26	6	150	21	197	20
1014	C	46,53	124,07	15	795	0	3	0	3	0	45	-	143	16	148	7
1064	0	46°26′	124°03'	5	***	0	3	0	3	0	55	4	107	19	187	15
1065	0	45,43	123°56	5	**	0	:	0	100	0	20	۳	139	7	167	5
IORR		150-13	+000C+	ii T	40	7		(4			-			-

	Prove	Provenance							Sites d'expérience ²	périence	V			
					Q.	PAR	ď	PAT	77	LOT	>	VER	=	IMA ¹²
Va	Variété Lat	at.	Long.	Alt	- 1	1	4			1		1	- 1	
	ou)	(nord)	(onest)	(m)	ei	=	ė.	ť	ď	ď	ė.	ď	ċ.	ć
1054	/ 44	44°48'	115°48'	1676	214	56	274	19	566	56	239	8	171	27
1033	/ 44	44°32′	118°34′	1485	172	8	245	24	248	28	204	13	142	20
1034	/ 44		120°25	1333	184	30	256	15	198	53	224	00	148	15
1060	1 44		111,006	2024	198	56	223	23	179	22	248	21	158	22
1072	1 44	44,00	112000	2286	157	23	198	23	197	22	182	11	159	20
101	40,	40012	107°00'	;	198	27	240	15	200	56	203	20	157	18
1099	1 40	40,05	105°33'	3250			213	18	170	29	155	12	172	26
100	37	37°35'	105°13'	2950	175	42	255	10	202	8	228	Ŧ	169	00
896			.1	*	173	14	243	23	194	56	201	16	162	19
696	2 59	59°30'	139°10'	45	149	29	201	31	175	24	162	21	137	26
970	,69 5	59°27	135°18'	30	178	24	208	29	173	32	204	19	189	24
971	2 58	58°27′	135°45	ß	170	27	217	53	176	33	199	23	154	35
972'	57,	57004	135°21'	30	138	31	202	27	169	27	195	29	173	33
973	2 56	56047	132°58'	23	177	34	231	34	207	36	232	28	123	33
055	55	55°40'	132°45'	99	162	30	215	25	180	3	168	53	147	27
1056	55,	55°34"	133003	30	163	29	221	33	220	33	204	27	128	30
1057	55,	55°22	131°42'	23	143	25	205	59	184	33	139	8	120	37
974 (55	55°03'	131°35'	33	143	37	200	34	166	31	193	30	118	52
075	2 50	50°40'	127°22'	23	100	24	180	21	156	35	186	21	142	23
1076	2 50	50001	124°46'	136	5	:	283	21	201	56	277	4	128	56
020	0 49	49°59'	125°29'	288	121	23	247	22	227	35	277	23	112	1051
1051	c 49°	49°54'	123°10'	454	*	200	273	25	*	ě	289	19		:
1004	6 40	946	126°03'	9	127	22	235	2	212	59	259	22	134	20
7701	c 49°	49°22′	124°32′	61	13	10	242	23	202	24	230	16	128	7
1078	c 49°	48,08,	123006	9	133	27	245	30	250	34	263	27	114	20
1079	c 49°	49,05	125047	23	102	30	201	27	152	25	193	31	138	32
1080	c 48	48°55	123045	61	143	23	203	24	181	33	21	2	110	3
1012	c 47	47057	123016	1667	180	31	222	32	194	56	214	24	165	30
1062	c 47	47°38'	124018	30	101	17	181	8	131	24	189	21	106	21
1028	c 47°	47°25	122°40'	2/9	120	9	234	22	238	31	217	27	122	17
1063	c 47	47014	123°05'	61	148	16	269	22	244	56	257	18	109	14
1014	c 46°	46°53"	124°07′	12	127	7	150	9	66	16	165	13	171	2
1064	c 46°	46°26'	124°03'	12	98	1	194	6	126	16	196	14	132	19
1065	c 45°	45°43	123°56'	15	75	N	130	D	97	4	160	14	121	11
1088	75010	50.50	10000	1	1	3								

Tableau 6 (suite). Situation géographique des provenances et hauteur à 10 ans à chaque site d'expérience

48

		Liovenance	31100							Sites d'ey	Sites d'expérience					
					0	CHI	LA	LAB ¹³	IGN	z	DAB	(B	O	GAS	_ m	BON
> au	Variété	é Lat.	Long.	Alt.	00	4	2		2	1	1	1				
100		(ninin)	(sano)	(11)		-	11.	1).	ri.	ď	G.	, L	ď	ď	'n	_
1019	S	44,34	124,04	15	1	0	5	0	5	0	1	0	126	9	135	,
1067	O	43,20	124,09,	15	:\$\	0		0	1	£	90	-	104	S	235	-
1068	O	43,30,	124°14	15	3	0	22	0	2	*	4	0	:	0	116	3.7
1069	Ö	42°46'	124°31'	15	:	0	£	0	-	0	:	0	3	0	06	7.0
1070	Ö	42015	124°24′	15		0	10	0	3	0		0	1	0	29	***
1022	o	41,50	123°53′	1091	131	o	232	10	260	19	7.1	9	70	9	123	'n
1025	O	40047	124°13'	15	1	0		0		0	8	0	2	0	131	
1013	E	47047	120°56'	758	120		202	10	:	:	173	17	231	33	275	26
1015	ш	46°50'	122°36'	136	14	0	6	0	160	-	110	2	171	13	166	5
1016	B	46,04	121°27	1212	63	6	158	7	207	16	148	16	191	30	207	26
1017	ш	45°23'	121°52'	545	6	က	206	12	246	28	144	14	192	56	224	S
1018	ш	45°18'	121°45	1273	62	4	132	14	191	19	114	18	178	24	214	56
1020	ш	44,08	121°38'	1697	35	က	177	4	160	25	82	17	148	3	180	2
1021	ш	43,19,	121,39,	1667	22	N	122	7	177	14	90	23	172	28	192	28
1035	ш	42,23	122,12	1500	1	0	150	0	154	S	91	00	135	28	167	-
1036	ш	45,18	120,47	1606	9	0	127	0	191	2	90	F	199	30	225	26
1023	ш	41,16	121,55	1212	4	0	2	0		0	91	4	172	52	151	7
1024	E	41,13	122,30,	2121	1	0	(1)	0	175	_	82	N	147	30	157	Ċ
1037	ш	40021	121°29′	1485	1	0		0	160	-	149	4	139	24	146	-
1026	ш	39°53'	121,077	1636	1	*		i (t)	÷	ıź	75	4	n	24	131	4
1038	ш	39,23,	121,08	1606	87	N		0	ŧ	0	55	က	108	15	125	
1073	ш	39,13	120012	1818	1	0	98	-	:	0	120	***	121	14	181	Ψ.
1040	ш	38,48	119,28	2333	1	0	1	0	155	-	22	7	100	28	117	1
1041	ш	37,21,	119,40	2394	104	-	t	0	:	0	25	N	101	24	106	w
1041	ш	37011	119,12	2182	20	-	4	0	261	2	55	4	66	25	100	7
1043	ш	36,27	118,36	2394	ī	0	1	0	9	-	80	-	117	15	96	w
1044	ш	36,06,	118,32,	2152	1	0	1	0	***	0	45	ťΩ	111	19	119	10
1045	Ш	34,13,	116°59'	2333	(2)	0	137	3	166	6	30	-	113	16	114	1-
1039	9	39°29	123°48'	15	Ę	0	ŧ	0	:	0	:	0	:	0	340	
1071	9	39°25	123°50'	15	ţ-	1	ř	ŧ		ē	:	5	:	0		0

¹ Variètés : latifolia (I), contorta (C), murrayana (m) et bolanderi (b). ³ Hauteur.

¹² Prise de données à 12 ans.

	Provenance	0						Sites d'ex	Siles d'expérience	u.			
				P	PAR	PAT	17	176	LOT	>	VER	=	IMA IZ
Vaneté		Long.	AIL										
	(puou)	(lsano)	(m)	N.	11.	r)	The same	e e	.0	Ė	ú	ų.	ď
0 6101	44°34'	124004	15	80	2	187	cu	85	13	175	12	133	10
067 0	43,20,	124,09	12	7.8	1	133	co	98	Ó	120	v	127	6
990	43,30,	124°14"	15	152	0	172	0	108	00	122	u)	125	10
90	45046	124931	15	121	T	20	-	1	0	142	00	117	10
to	42015	124024	15	80	7	80	-	10	0	132	(0)	117	es
O	41,20,	123°53	1001	98	22	150	21	112	2	129	9	140	28
0	40047	124013	15		0		0		0		0	150	CI
1013 m	47047	120°56	758	509	24	354	23	257	31	271	34	153	23
E	46,20	122°36°	136	128	17	239	50	200	51	222	23	172	o
W	46,04	121027"	1212	223	35	215	22	207	×	231	20	154	21
m	45°23'	121°52"	545	187	3	293	25	257	33	287	27	140	23
æ	45°18"	121045	1273	165	28	224	30	224	6	218	21	147	31
020 m	44008	121038	1697	121	22	159	22	143	30	145	20	175	26
11/	43019	121039	1667	155	20	225	20	198	3	212	24	157	22
E	42023	122012	1500	156	20	235	13	206	8	558	57	119	24
W	42018	120°47	1606	173	28	253	50	219	23	252	20	150	23
w	41016	121°55	1212	132	23	181	14	196	20	228	13	131	F
w	41013	122°30′	2121	123	2	177	52	149	50	176	17	131	15
E	40,51	121°29	1485	8	12	162	52	157	17	194	12	113	13
H	39,23,	121007"	1636	2	17	106	9	129	19	132	1	134	50
W	39,23,	121,08	1606	119	1-	160	ထ	119	10	144	ın	101	16
111	39°13'	120°12"	1818	72	cv	137	10	143	1.9	160	4	108	TV.
H	38°48'	119°58"	2333	88	15	136	13	130	15	137	12	149	24
m	37051	119040	2394	78	13	10	60	116	16	123	(?)	102	18
E	37011	119012	2182	140	Ö	146	16	112	12	121	11	113	47
w	36°27"	118036	2394	100	+	119	9	141	7	142	4	90	14
ш	36,06	118°32"	2152	98	14	184	7	149	17	130	89	104	12
w	34013	116°59"	2333	6	80	154	et:	172	13	100	e	102	17
q	36,58.	123048	12	06	3	*	0	2.3	0		0		0
q	39,52	123°50′	15	110	0	1	0	11.	0	200	***		0
	The second second				7								

² Sites d'expérience: Chibougamau (CHI), Labraville (LAB), Lab Saint-Ignace (IGN), Dablon (DAB), Gaspe (GAS), Borsventure (BON), Parke (PAR), La Patrie (PAT), 12 Prise de données à 13 ans.

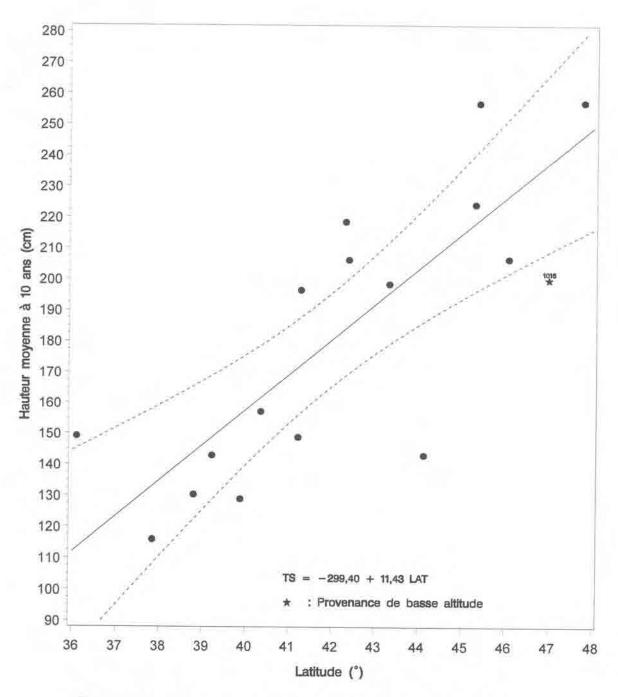


Figure 21 – Régression de la hauteur moyenne des provenances de la var. mwrrayana à Lotbinière en fonction de la latitude de leur lieu d'origine géographique

La hauteur moyenne des provenances dont le nombre d'arbres mesurés est inférieur à 14 apparaît aussi au tableau 6.

Les arbres des trois provenances de la variété bolanderi ne présentent aucun intérêt pour la production ligneuse sur tous les sites. Les quelques arbres encore vivants (taux de survie de moins de 1 %) à l'âge de 10 ans ont une croissance faible et une forme peu intéressante.

La hauteur moyenne des provenances de la variété contorta varie de facon significative sur chacun des sites. À La Patrie, Lotbinière et Verchères, les provenances situées au nord du 55^e degré de latitude ont une croissance plus faible que les provenances n^{os} 1004, 1050, 1076, 1051, 1080, 1078, 1028 et 1063 situées entre 47° et 50° de latitude. Ces huit provenances ont eu une croissance rapide au cours des six premières années de plantation (surtout les provenances nos 1076 et 1078); elles ont été un peu moins affectées, jusqu'à 6 ans, que les provenances voisines de cette variété, par la dessiccation hivernale des aiguilles, probablement à cause de leur altitude un peu plus élevée. La survie et la croissance de ces provenances ont cependant diminué au cours des années subséquentes à cause de la dessiccation répétée des aiguilles. Les provenances situées au sud du 47e degré de latitude sont, parmi les provenances de cette variété, celles qui ont la croissance la plus faible. Pour les sites de Chibougamau, Labrieville, Lac-Saint-Ignace et Dablon, les provenances situées au nord du 55^e degré de latitude et les provenances nos 1022 et 1012 dont l'altitude est beaucoup plus élevée, sont supérieures, pour la hauteur, aux autres provenances de cette variété (tableau 6).

La hauteur moyenne des provenances de la variété murrayana varie de façon significative sur chacun des sites (tableau 6). Pour les sites de Gaspé, Bonaventure, Parke, La Patrie, Lotbinière, Verchères et les Îles-de-la-Madeleine, la hauteur diminue progressivement avec une diminution de la latitude. La courbe de régression de Lotbinière (figure 21), semblable à celle des autres sites mentionnés, montre qu'il y a une relation linéaire entre la latitude des provenances et leur hauteur moyenne. Aux sites de Chibougamau, Labrieville, Lac-Saint-Ignace Dablon, les provenances situées au nord du 43^e degré de latitude ont une meilleure croissance en hauteur. La faible altitude de la provenance nº 1015 affecte de façon négative sa hauteur sur tous les sites. La courbe de régression de la figure 21 a été calculée sans les données de la provenance n° 1015.

La hauteur movenne des provenances de la variété latifolia varie de façon significative à chacun des sites. Aux sites de La Patrie, Lotbinière et Verchères, il existe deux groupes de provenances dont les hauteurs sont plus faibles que celles des autres provenances de cette variété. Un groupe est situé au nord de la Colombie-Britannique et comprend les provenances nos 976, 977, 978 et 979. Ces provenances ne sont pas affectées par la dessiccation hivernale des aiguilles mais subissent une perte de croissance caractéristique d'un déplacement latitudinal nord-sud important affectant ces provenances par le photopériodisme. L'autre groupe est situé dans la partie sud de l'aire de distribution de la variété et comprend les provenances nos 1033, 1034, 1060, 1072, 1101, 1099 et 968. Ces provenances (surtout les nos 1033, 1034 et 1072) sont affectées partiellement par la dessiccation hivernale des aiguilles.

3.2.4 Choix des meilleures provenances

La hauteur moyenne et le taux de survie sont les deux variables qui caractérisent le mieux l'adaptation des provenances à chacun des sites. Une analyse de groupement a été effectuée, pour chaque site, en considérant comme variables la hauteur et le taux de survie des provenances. Aucune analyse de groupement n'a été réalisée aux sites de Chibougamau et Labrieville compte tenu du taux de mortalité élevé à ces deux endroits. Pour l'analyse de groupement, le taux de survie minimum a été fixé, après un examen complet des données, à 50 % dans huit sites et à 32.5 % à Dablon. On considère que les provenances dont le taux de survie est inférieur aux taux minimums choisis présentent un risque élevé de défaut d'adaptation aux sites concernés et elles ont été excluses des analyses.

Un certain nombre de groupes de provenances ont été retenus à chaque site afin de réduire le nombre de provenances à comparer dans les tests de comparaisons multiples. La localisation des provenances retenues à la suite de l'analyse de groupement, dans neuf sites, est présentée à la figure 22. Les provenances retenues le plus souvent par les analyses de groupement (dans 51 à 100 % des sites) sont toutes de la variété *latifolia* et presque toutes situées au nord du 49^e degré de latitude. D'autres provenances des variété *contorta, murrayana* et *latifolia* sont retenues moins souvent (dans 1 à 50% des sites).

Les résultats du test de Friedman sur la hauteur des provenances retenues à chaque site (tableau 7) justifient l'application du test de comparaisons multiples sur la hauteur pour déterminer les meilleures provenances à chaque endroit. En effet, dans tous les cas, la valeur de *F* nous indique qu'il y a une différence

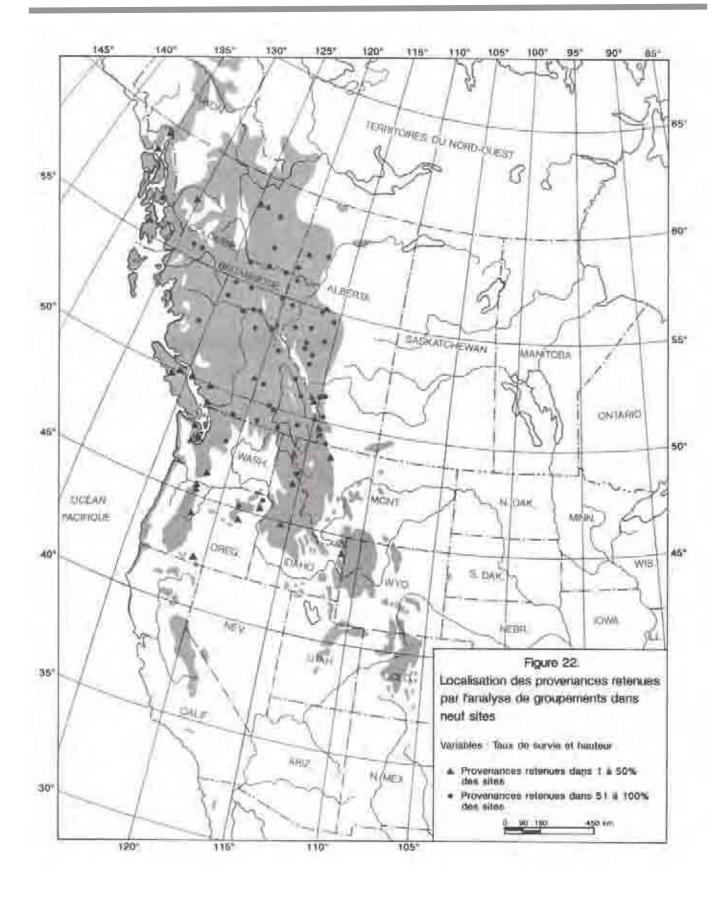
Tableau 7. Application du test de Friedman sur la hauteur moyenne à 10 ans des provenances retenues à chaque site

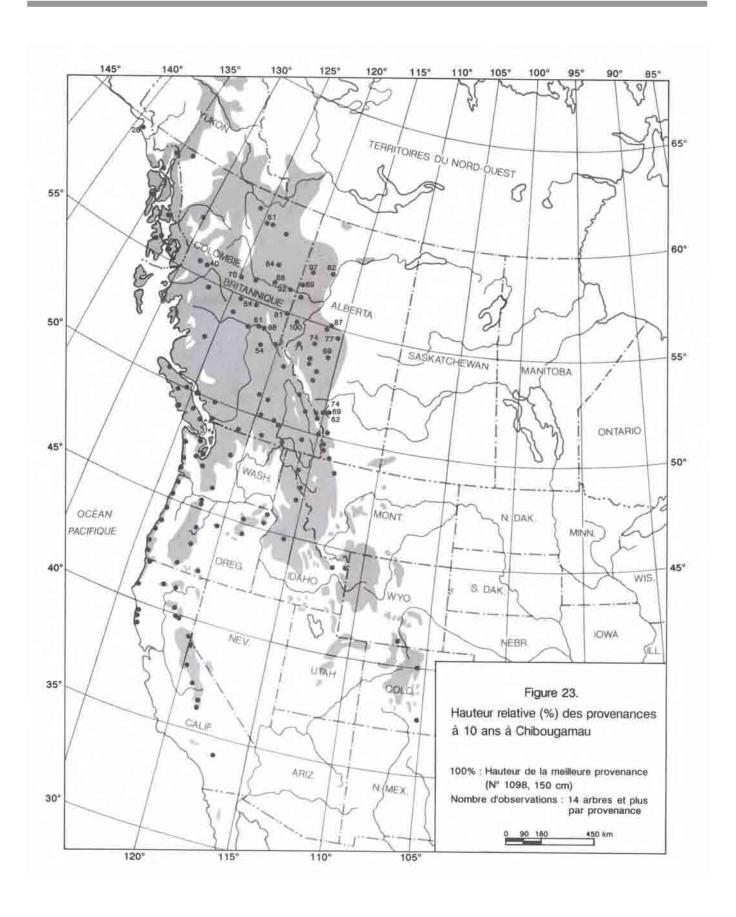
Sites	Nombre de provenances	Hauteur moyenne maximale (cm)	Hauteur moyenne minimale (cm)	Valeur de F	Probabilité [†] > <i>F</i>
Chibougamau** Labrieville**					
Lac-Saint-Ignace	30	311	206	4,74	0,0001
Dablon	49	246	156	2,92	0,0001
Gaspé	49	311	219	2,82	0,0001
Bonaventure	54	338	225	4,40	0,0001
Parke	47	276	178	4,23	0,0001
La Patrie	50	341	245	2,92	0,0001
Lotbinière	67	312	207	4,30	0,0001
Verchères	51	337	204	4,50	0,0001
Îles-de-la-Madeleine*	44	249	160	4,73	0,0001

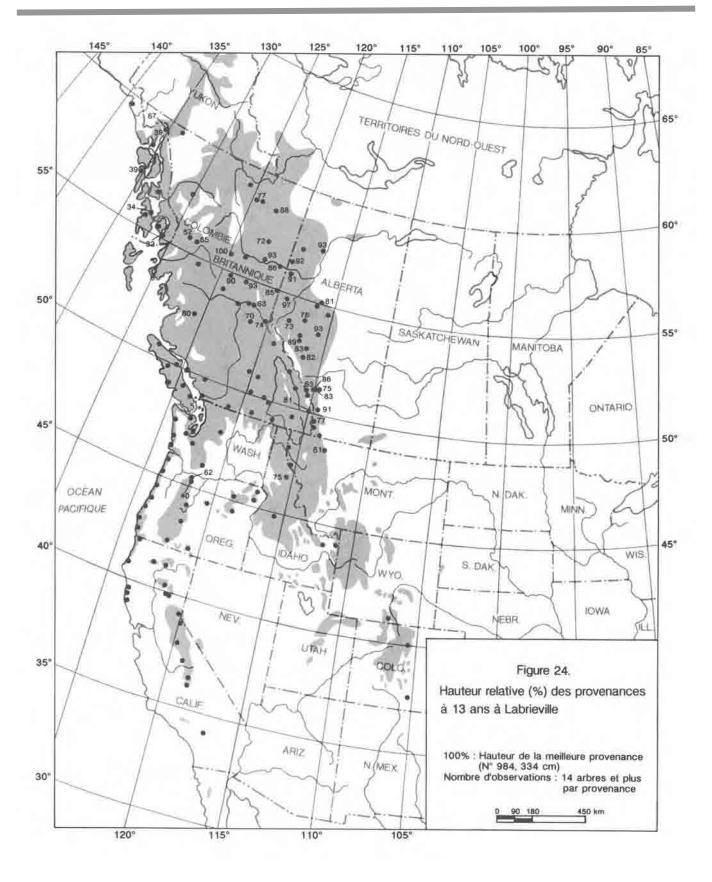
⁺ Probabilité de *F* significative au seuil $\alpha = 0.05$.

significative supérieure au seuil $\alpha=0.05$ entre la hauteur moyenne des provenances retenues à la suite de l'analyse de groupement à chaque site. La différence entre les hauteurs moyennes maximales et minimales des provenances retenues à chaque site varie de 89 à 133 cm à 10 ans.

À Chibougamau, les conditions climatiques rigoureuses limitent fortement l'adaptation des provenances. Parmi celles dont le nombre d'arbres mesurés à 10 ans est de 14 et plus, figurent une provenance de la variété contorta (n° 969) et 23 provenances de la variété latifolia. Les meilleures provenances sont toutes de la variété latifolia et situées, pour la majorité, à une latitude égale ou supérieure à 53° et à une altitude supérieure à 700 m. Quelques autres provenances (nos 1010 et 1091), situées en Alberta à une latitude de 51° et à une altitude de 1400 à 1500 m, ont une performance en hauteur comparable à ces dernières (figure 23). Les 15 meilleures provenances ont une hauteur moyenne qui varie de 104 à 150 cm. Environ 6 % des arbres de ces provenances ont des tiges multiples mais il ne semble pas y avoir de différence significative entre les provenances pour ce qui est de cette variable.


À Labrieville, parmi les provenances dont le nombre d'arbres mesurés à 13 ans est égale ou supérieur à 14, se trouvent deux provenances de la variété *murrayana*, cinq de la variété *contorta* et 35 de la variété *latifolia*. Les meilleures provenances sont


toutes de la variété *latifolia* et situées, pour la majorité, à une latitude égale ou supérieure à 53° et à une altitude supérieure à 700 m. Quelques autres provenances (n° 1088 et 1010), situées en Alberta à une latitude de 50° et 51° et à une altitude de 1400 à 1500 m, ont une performance en hauteur comparable à ces dernières (figure 24). La zone des meilleures provenances à Labrieville est approximativement la même que celle déterminée à Chibougamau. Les 15 meilleures provenances ont une hauteur moyenne, à 13 ans, qui varie de 284 à 334 cm. Environ 3 et 5 % des arbres de ces provenances ont des tiges multiples et des fourches; il ne semble pas y avoir de différence significative entre les provenances pour ces variables.


Le choix des meilleures provenances pour les neuf autres sites est fondé sur les résultats du test de Waller-Duncan à chacun des endroits, sur le classement des provenances sur l'ensemble des sites et leur localisation dans l'aire de distribution. À Lac-Saint-Ignace, les hauteurs movennes des 21 provenances formant les groupes A, B, C et D sont significativement supérieures aux hauteurs moyennes des provenances formant les groupes J, K et L (figure 25). Les provenances des groupes A, B, C et D sont situées en Colombie-Britannique et en Alberta, au nord du 49^e degré de latitude (figure 26). D'autres provenances (nos 995, 992, 1010 et 1027), dont le taux de survie est légèrement inférieur à 50 %, ont une hauteur semblable à celle des meilleures provenances.

^{*} Données prises à 12 ans.

^{**} Aucune donnée.

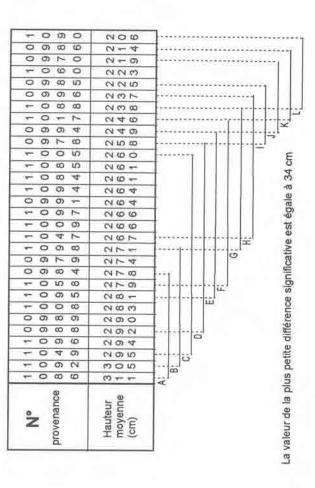
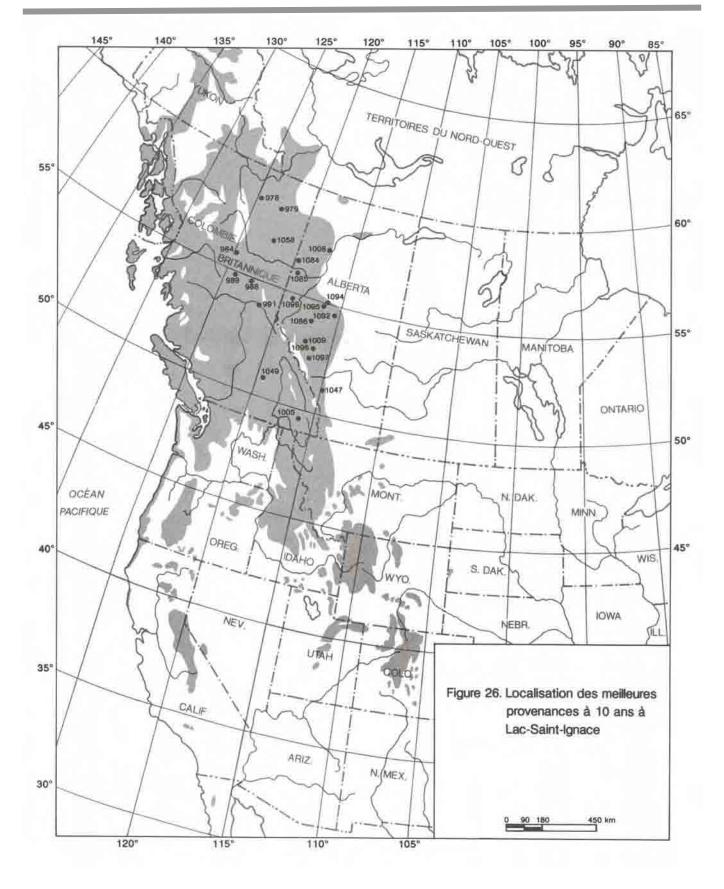



Figure 25 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Lac-Saint-Ignace

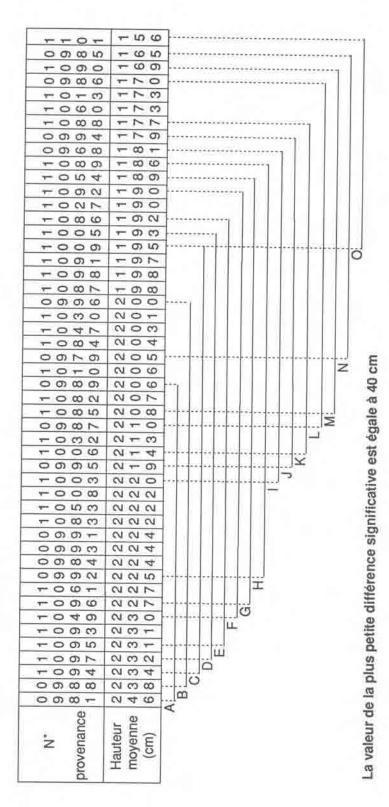
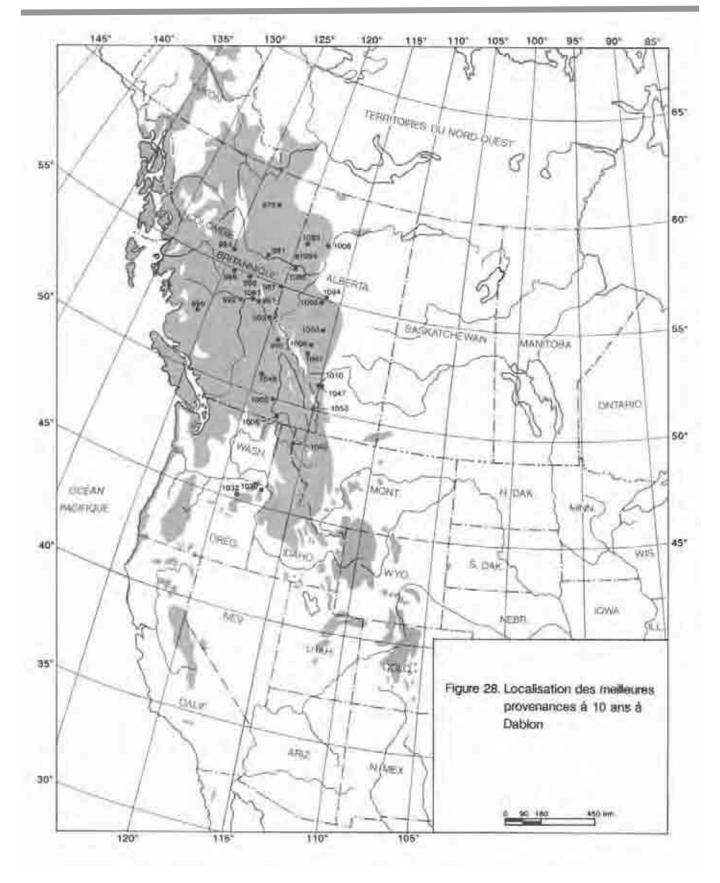



Figure 27. Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Dablon

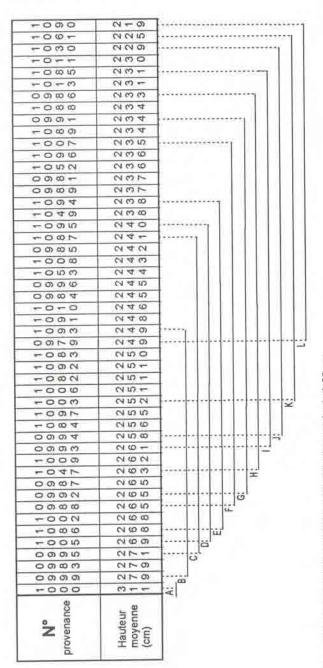
Pour ce qui est des moyennes des provenances formant les groupes E, F, G, H et I, il est impossible de tirer de conclusion générale puisque les traits chevauchent soit les moyennes des groupes A, B, C et D, soit les moyennes des groupes J, K et L. Il faut donc dans cette situation faire les comparaisons entre les provenances qui semblaient intéressantes à priori en les prenant deux à deux comme nous l'avons expliqué au chapitre deux. Cette procédure s'applique pour tous les autres sites où le test de Waller-Duncan a été effectué.

À Dablon, les hauteurs moyennes des 30 provenances formant les groupes A et B sont significativement supérieures aux moyennes des provenances formant le groupe O (figure 27). Les provenances des groupes A et B sont situées au nord du 49e degré de latitude, à l'exception de trois (figure 28).

À Gaspé, la hauteur moyenne de la provenance n° 1000, qui forme à elle seule le groupe A, est significativement supérieure aux moyennes de toutes les autres provenances. Pour les groupes B et L, à l'exception des provenances n° 979 et 1093 qui se retrouvent à l'intersection des deux groupes, les hauteurs moyennes des 21 provenances formant le groupe B sont significativement supérieures aux moyennes des provenances formant le groupe L (figure 29). Excepté la provenance n° 1082, les provenances du groupe B sont situées au nord du 49° degré de latitude (figure 30).

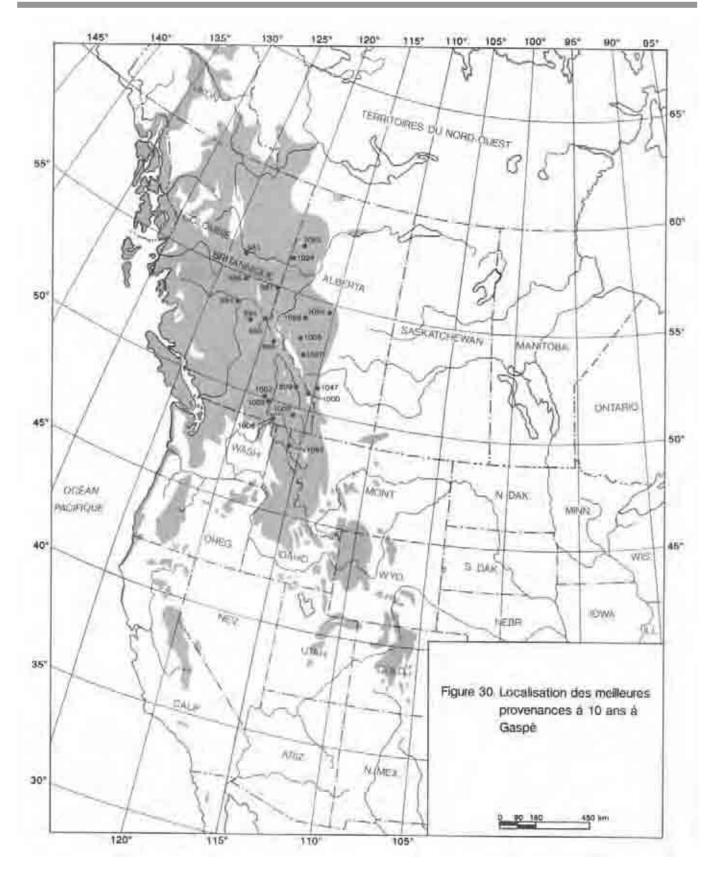
À Bonaventure, les hauteurs moyennes des 30 provenances formant les groupes A, B, C, D, E et F sont significativement supérieures aux hauteurs moyennes des provenances formant les groupes O, P, Q et R (figure 31). Excepté pour deux provenances (n° 1013 et 1032), les provenances des groupes A, B, C, D, E et F sont situées au nord du 49° degré de latitude (figure 32).

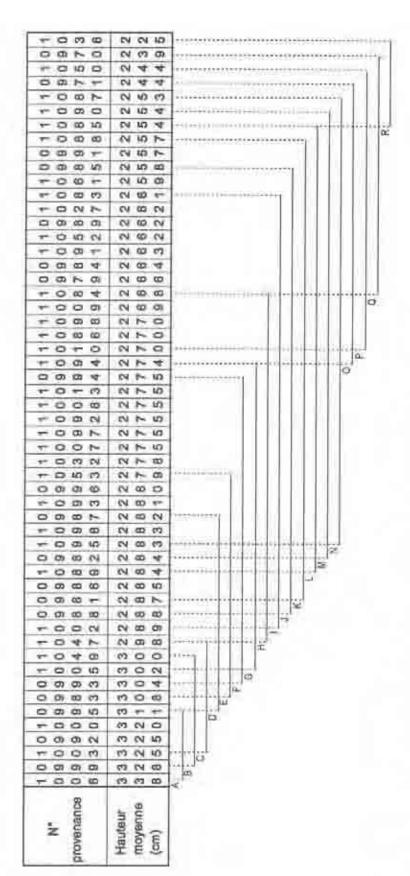
À Parke, à l'exception des provenances n°s 987 et 1086 qui se retrouvent à l'intersection des groupes D et N, et de la provenance n° 987 qui se retrouve à l'intersection des groupes D et O, les hauteurs moyennes des 21 provenances formant les groupes A, B, C et D sont significativement supérieures aux hauteurs moyennes des provenances formant les groupes N, O et P (figure 33). Les provenances des groupes A, B, C et D sont situées au nord du 49° degré de latitude (figure 34). D'autres provenances (n°s 1083, 993, 1092, 1002 et 1003), dont le taux de survie est légèrement inférieur à 50 %, ont une hauteur semblable à celle des meilleures provenances.


À La Patrie, les hauteurs moyennes des 18 provenances formant les groupes A, B et C sont significativement supérieures aux hauteurs moyennes des provenances formant les groupes N et O (figure 35). À l'exception de deux provenances (n° 1013 et 1017) de la variété *murrayana* et d'une provenance (n° 1082) de la variété *latifolia*, les provenances des groupes A, B et C sont situées entre le 49° et le 56° degré de latitude (figure 36). D'autres provenances (n° 1084, 991, 1092, 1006 et 1030), dont le taux de survie est légèrement inférieur à 50 %, ont une hauteur semblable à celle des meilleures provenances.

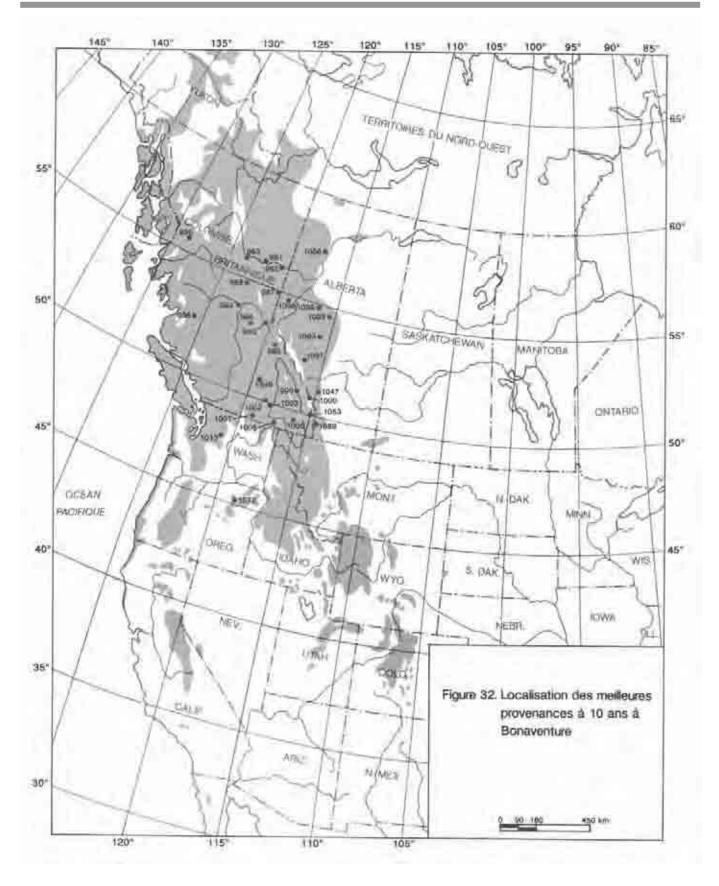
À Lotbinière, les hauteurs moyennes des 32 provenances formant les groupes A, B, C, D, E et F sont significativement supérieures aux hauteurs moyennes des provenances formant les groupes R, S, T, U et V (figure 37). À l'exception de quatre provenances (n° 1082, 1027, 1030 et 1054) de la variété *latifolia*, situées au sud du 49° degré de latitude, les provenances des groupes A, B, C, D, E et F sont situées entre le 49° et le 56° degré de latitude (figure 38).

À Verchères, les hauteurs moyennes des 27 provenances formant les groupes A, B, C et D sont significativement supérieures aux hauteurs moyennes formant les groupes I, J et K (figure 39). À l'exception de deux provenances (n° 1013 et 1017) de la variété *murrayana* et d'une provenance (n° 1027) de la variété *latifolia*, situées au sud du 49e degré de latitude, les autres provenances des groupes A, B, C et D, dont deux provenances (n° 1004 et 1050) de la variété *contorta*, sont situées entre le 49e et le 57e degré de latitude (figure 40). D'autres provenances (n° 995, 1006, 1076, 1051, 1000, 1082, 1029 et 1007), dont le taux de survie est légèrement inférieur à 50 %, ont une hauteur semblable à celle des meilleures provenances.


Aux Îles-de-la-Madeleine, les hauteurs moyennes des 20 provenances formant les groupes A, B, C, D, E et F sont significativement supérieures aux hauteurs moyennes formant le groupe N (figure 41). À l'exception de la provenance n° 1030, toutes les provenances des groupes A, B, C, D, E et F sont situées au nord du 49° degré de latitude (figure 42).

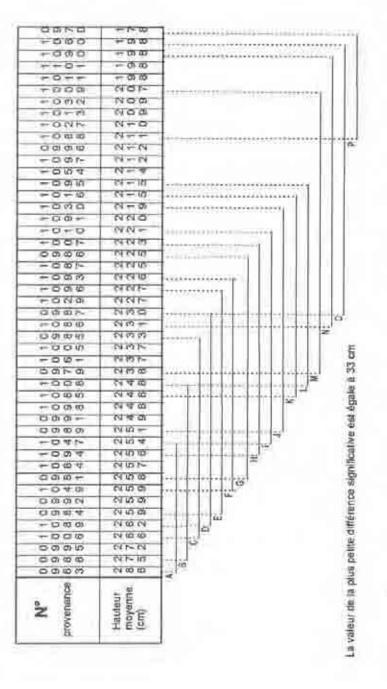
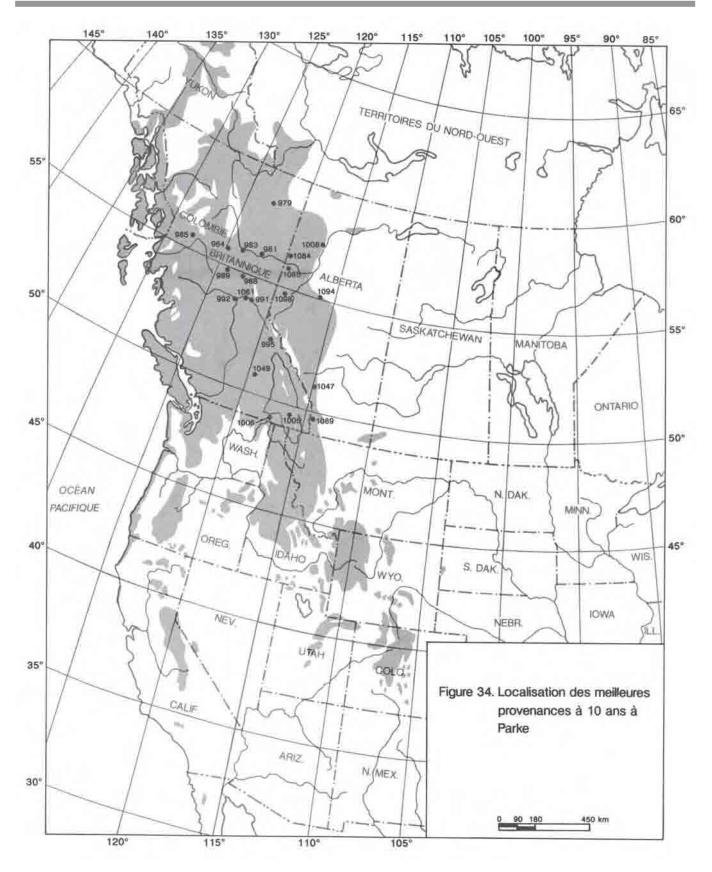
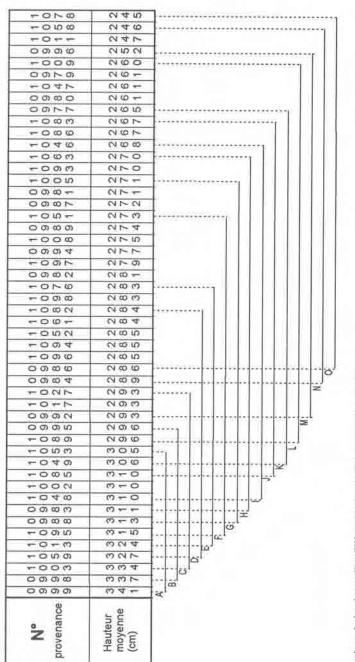

Les résultats de l'analyse de comparaisons multiples montrent que le choix des meilleures provenances, est influencé par les conditions climatiques rencontrées sur chaque site. En passant des conditions climatiques les plus rigoureuses (Chibougamau) aux conditions climatiques les plus clémentes (Verchères), on note les changements suivants : à Chibougamau, les meilleures provenances sont

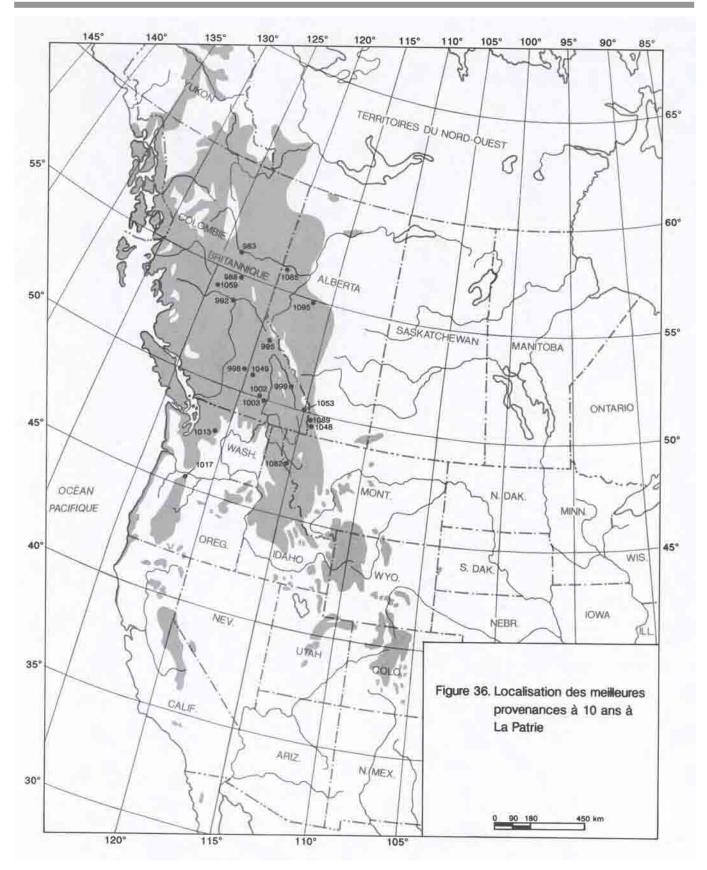
La valeur de la plus petite différence significative est égale à 30 cm


Figure 29 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Gaspé

La valeur de la plus petite différence significative est égale à 30 cm

Figure 31 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Bonaventure


Figure 33 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Parke

La valeur de la plus petite différence significative est égale à 43 cm

Figure 35 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à La Patrie

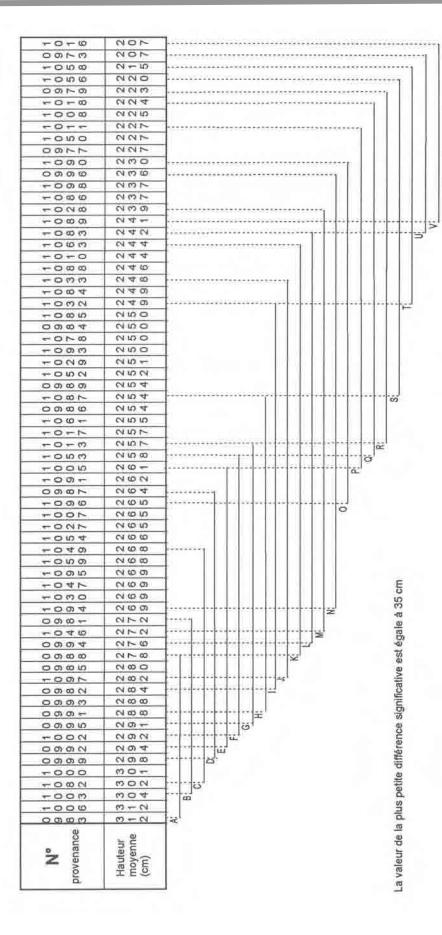
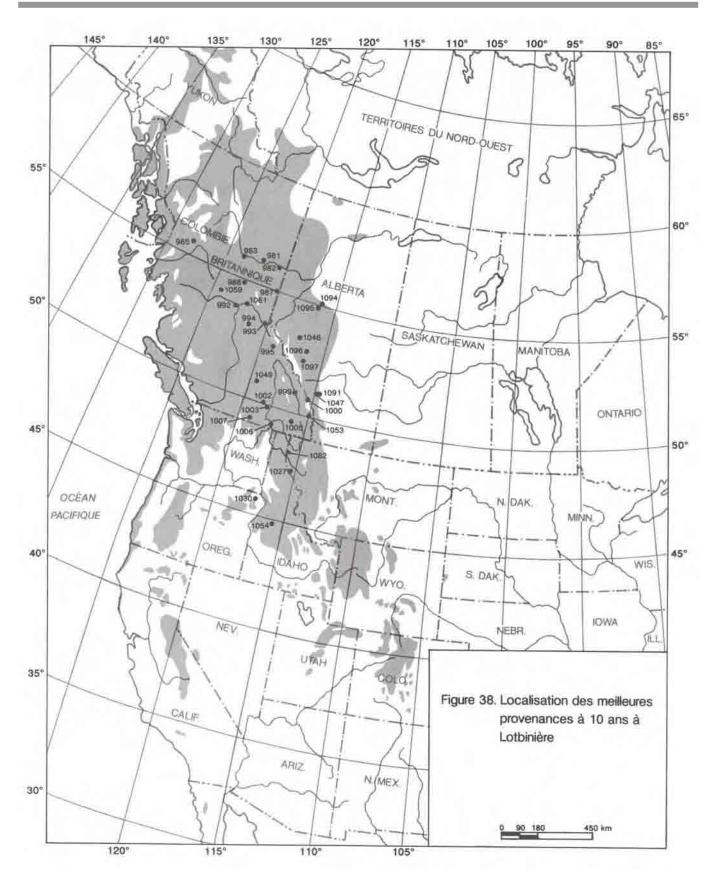



Figure 37 . Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Lotbinière

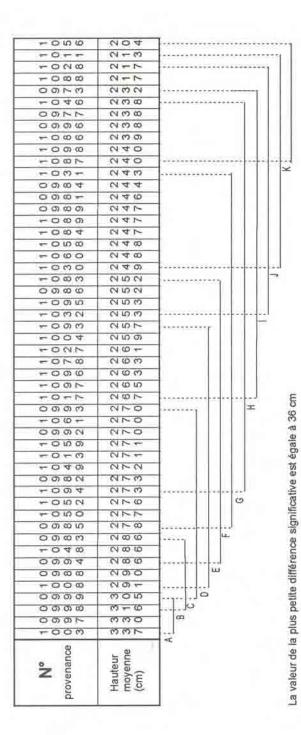
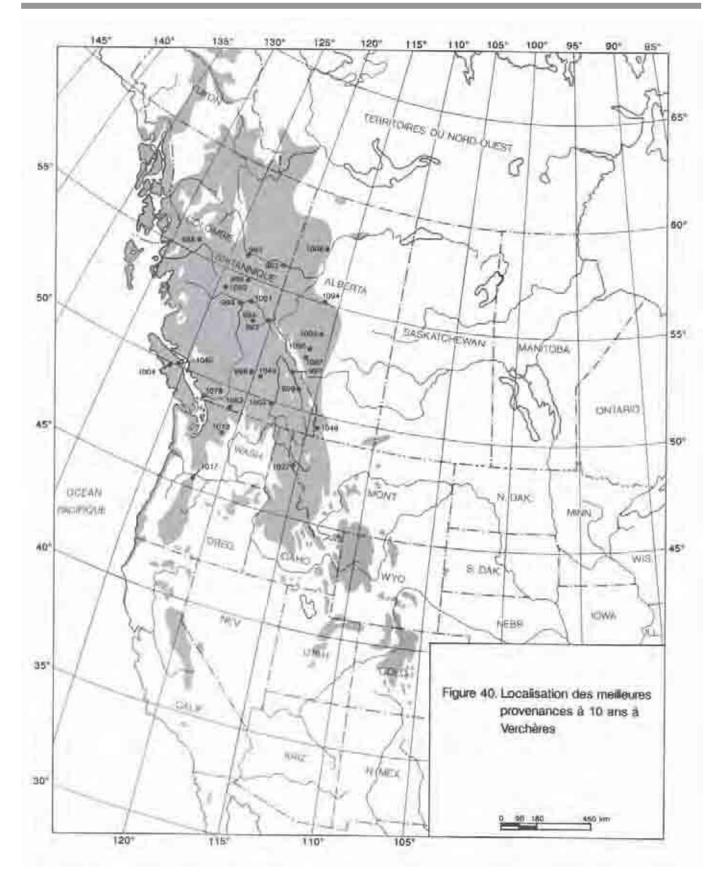



Figure 39. Test de Waller-Duncan sur la hauteur moyenne des provenances à 10 ans à Verchères

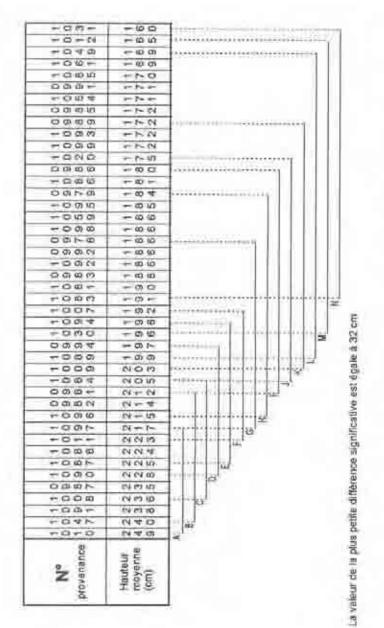


Figure 41. Test de Waller-Duncan sur la hauteur moyenne des provenances à 12 ans aux Îles-de-la-Madeleine

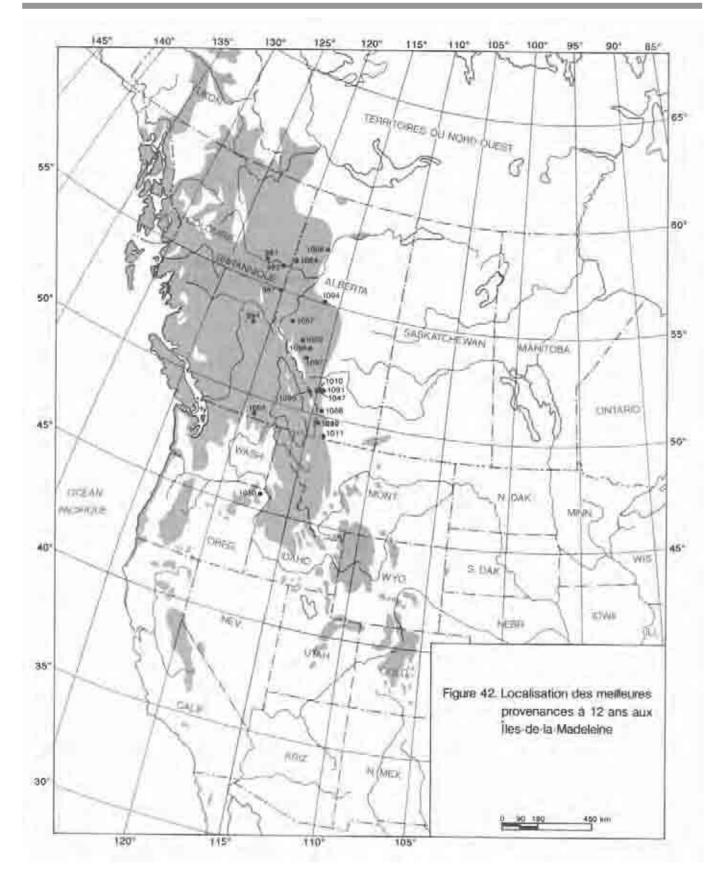


Tableau 8. Matrice des coefficients de corrélation des rangs de Spearman pour la hauteur moyenne des 49 provenances communes aux neuf sites d'expérience

Sites d'expérience	IGN	DAB	GAS	BON	PAR	PAT	LOT	VER	IMA
IGN	1,0000	0,7562	0,7345	0.6740	0.7048	0,6783	0,4818	0,5194	0,3664
		((0,000.0)	(0,0001)	(0,0001)	(0,0001)	(0.0001)	(0,0001)	(0.0001)	(0,0096)
DAB		1,0000	0,6916	0,7376	0,8093	0,7288	0,7183	0.5737	0,4484
			(0,0001)	(0.0001)	(0.0001)	(0,0001)	(0,0001)	(10000,0)	(0,0012)
GAS			1,0000	0,8169	0,7012	0,5427	0,6070	0,5772	0,4580
				(10000'0)	(0.0001)	(0,0001)	(0.0001)	(0,0001)	(60000'0)
BON				1,0000	0,7862	0,8683	0,6527	0,8652	0,4119
					(0,0001)	(0,0001)	(0,0001)	(0,0001)	(0,0033)
PAR					1,0000	0,7815	0,6826	0,8450	0,3073
						(0.000.0)	(0,0001)	(0,0001)	(0,0317)
PAT						1,0000	0,6854	0,6361	0,1514
							(0,0001)	(0,0001)	(0.2991)
TOT							1,0000	0,7672	0,2214
								(1000'0)	(0,1263)
VER								1,0000	0,1367
									(0,3488)
IMA									1 0000

Sites d'expérience: Lab-Salmignace (IGN), Dabion (DAB), Gaspe (GAS), Bonaventure (BON), Parke (PAR), La Patrie (PAT), Lotbinière (LOT), Verchéres (VER) et Îles-de-la-Madéioine (IMA).

La valeur entre parenthèses correspond au seuil de signification observe.

situées au nord du 53^e degré de latitude; à Labrieville, d'autres provenances, situées à plus haute altitude, dans les contreforts des Rocheuses, et à une latitude de 50° à 51°, s'ajoutent à celles déterminées pour Chibougamau: à Lac-Saint-Ignace, s'ajoutent d'autres provenances, toujours de la variété latifolia, situées au nord du 49e degré de latitude; de Dablon à Lotbinière, s'ajoutent d'autres provenances situées à une longitude plus élevée, au nord du 49^e degré de latitude et d'autres provenances situées au sud du 49^e degré de latitude, dans la partie nord des États de Washington, de l'Idaho et de l'Orégon; à La Patrie, Lotbinière et Verchères, les provenances situées au nord du 57^e degré de latitude ne font pas partie des meilleures provenances; quelques provenances des variété contorta et murrayana sont parmi les meilleures provenances à Verchères.

Certaines provenances performent bien sur plusieurs sites. C'est le cas des provenances n°s 983, 988, 992, 995, 999, 1003 et 1006 qui se classent parmi les meilleures provenances à Dablon, Gaspé, Bonaventure, Parke, La Patrie, Lotbinière et Verchères. Ces provenances occupent une mince bande, orientée sud-est, situées sur le plateau du Fraser et dans les montagnes de Colombie-Britannique, entre le 49° et le 56° degré de latitude. L'altitude de ces provenances varie de 600 à 1000 m.

Afin de regrouper des sites, nous avons fait une analyse de corrélation des rangs de Spearman pour la variable hauteur moyenne des 49 provenances communes aux neuf sites (tableau 8). Les coefficients obtenus nous permettent de regrouper les sites, dont le classement des provenances est semblable, en trois groupes: un premier, formé des sites de Lac-Saint-Ignace, Dablon, Gaspé, Bonaventure, Parke et La Patrie; un second, formé des sites de Lotbinière et Verchères puis un troisième, pour le seul site des Îles-de-la-Madeleine.

3.2.5 Croissances en hauteur et diamètre comparées avec ceux du pin gris

Des données sur la hauteur et le diamètre des cinq meilleures provenances de *Pinus contorta* et des provenances témoins de pin gris ont été comparées à chaque site (tableau 9), sauf pour le site de Lac-Saint-Ignace où le chancre scléroderrien a causé la morta-lité de 90 % des arbres de la provenance témoin et où tous les arbres restants de cette provenance sont attaqués par ce chancre. Le nombre minimum d'arbres mesurés par provenance est de 14. Le DHP n'a pas été mesuré à Chibougamau et Labrieville; à Chibougamau, la majorité des arbres avaient une hauteur inférieure à 1,50 m.

La hauteur des arbres de toutes les provenances de *Pinus contorta* est corrélée significativement avec le DHP. Les coefficients de corrélation obtenus à huit sites (Lac-Saint-Ignace à Verchères) varient de 0,97 à 0,99 avec un seuil de signification observé de 0,0001.

À Chibougamau, la hauteur moyenne, à 10 ans, de la provenance de pin gris est supérieure de 27 % à la hauteur moyenne des cinq meilleures provenances de *Pinus contorta* et de 17 % à la meilleure provenance. La hauteur des arbres de chaque provenance de *Pinus contorta* est beaucoup plus variable que celle du pin gris; la valeur du coefficient de variation de la hauteur de chaque provenance de *Pinus contorta* est le double de celle du pin gris. La rigueur des conditions climatiques exerce une sélection individuelle plus forte qu'aux autres sites. La hauteur maximum des arbres des meilleures provenances de *Pinus contorta* est semblable et quelquefois supérieure à celle du pin gris.

À Labrieville, Gaspé, Bonaventure et Parke, les hauteurs moyennes et maximum, les DHP moyen et maximum et les coefficients de variation de la hauteur et du DHP des cinq meilleures provenances de *Pinus contorta* sont semblables à ceux des provenances de pin gris à chaque site.

À Dablon, La Patrie, Lotbinière et Verchères les hauteurs moyennes des provenances de pin gris sont supérieures de 33, 11, 15 et 24 % aux hauteurs moyennes des cinq meilleures provenances de *Pinus contorta* à chaque site. Dans le même ordre de sites, la hauteur moyenne de la meilleure provenance de pin gris, à chaque site, est supérieure de 30, 19, 17 et 23 % à celle de la meilleure provenance de *Pinus contorta*. Les coefficients de variation de la hauteur et du DHP, pour chacune des deux espèces, sont semblables à chaque site. Dans le même ordre de sites, les DHP moyens des provenances de pin gris sont supérieures de 48, 13, 22 et 28 % aux DHP moyens des provenances de *Pinus contorta* à chaque site.

Aux Îles-de-la-Madeleine, les hauteurs moyennes des cinq meilleures provenances de *Pinus contorta* sont supérieures de 21 % aux hauteurs moyennes des cinq provenances de pin gris. La hauteur moyenne de la meilleure provenance de *Pinus contorta* est supérieure de 18 % à la meilleure provenance de pin gris.

*

Tableau 9. Hauteur et DHP à 10 ans, à chaque site, des cinq meilleures provenances de *Pinus contorta* et des provenances témoins de *Pinus banksiana*

Site d'expé-		N° prove- nance	Nombre d'obser- vations	Hauteur moyenne	Ecart- type	Coefficient de variation	Hauteur maximum	DHP moyen	Ecart- type	Coefficient de variation	DHP maximum
rience ¹				(cm)	(cm)	(%)	(cm)	(mm)	(mm)	(%)	(mm)
CHI		1098	14	150	67	45	282				
		1083	17	144	67	47	245				
		982	16	137	73	53	288				
		991	15	133	53	40	240				
		981	20	132	52	39	261				
	P. banksiana	00.		.02	0_	00	20.	••		••	••
	Darmoraria	1104	20	176	35	20	266				
LAB*		984	23	334	81	24	495				
בייט		1098	17	325	74	23	420				••
		981	24	312	114	37	510	••		••	
		1008	20	312	78	25	430	••		••	••
		988						••		••	••
	D hanksiana	900	23	310	90	29	485	••			••
	P. banksiana	4404	45	240	0.4	07	400				
		1104	15	312	84	27	420				
IGN		1086	28	311	52	17	405	44	11	26	70
		1092	22	305	63	21	400	40	13	32	59
		995	17	299	61	20	400	44	15	34	65
		1049	25	295	59	20	385	39	15	39	70
		1096	25	294	77	26	435	40	16	39	75
DAB		981	24	246	64	26	370	30	14	47	54
		988	25	238	59	25	330	31	15	48	60
		1094	24	234	78	33	335	27	20	75	59
		1097	20	232	63	27	335	29	13	47	44
		1095	20	231	63	27	370	27	15	57	62
	P. banksiana	1000	20	201	00	21	370	21	10	57	02
	i . bai iksiai ia	1105	21	321	93	29	555	46	20	44	82
		1103	19	320	73	23	460	41	15	35	62
		1104	27	318	68	22	450	45	19	42	77 67
		1106	15	293	78	27	430	41	19	45	67
GAS		1000	21	311	52	17	400	43	10	24	62
		999	32	279	74	27	400	34	16	46	57
		983	33	279	74	26	400	35	18	51	68
		995	31	271	69	25	400	33	14	44	60
		1005	32	269	79	29	400	35	17	50	61
	P. banksiana										
		1104	26	311	70	22	410	42	17	40	65
		1106	24	306	52	17	400	37	11	30	72
		1102	16	300	61	20	420	34	15	43	57
		1105	26	298	58	20	380	36	15	42	56
		1107	26	278	49	18	350	33	15	45	70
		1107	20	210	43	10	330	JJ	10	40	70

Tableau 9 (suite). Hauteur et DHP à 10 ans, à chaque site, des cinq meilleures provenances de *Pinus contorta* et des provenances témoins de *Pinus banksiana*

Site d'expé-		N° prove- nance	Nombre d'observations	Hauteur moyenne	Ecart- type	Coefficient de variation	Hauteur maximum	DHP moyen	Ecart- type	Coefficient de variation	DHP maximum
rience 1				(cm)	(cm)	(%)	(cm)	(mm)	(mm)	(%)	(mm)
BON		1006	21	338	51	15	410	45	11	24	62
		999	21	328	53	16	405	45	13	30	65
		1003	28	325	47	15	400	40	10	24	59
		992	31	325	62	19	430	42	13	31	62
		1000	22	320	42	13	390	44	10	22	57
	P. banksiana										
		1105	27	351	55	16	450	46	12	27	67
		1104	34	350	67	19	490	50	17	34	72
		1102	16	336	42	12	400	46	13	27	68
		1107	22	327	33	10	390	46	12	25	75
PAR		983	30	276	68	25	415	35	17	48	75
		988	22	275	48	17	365	34	11	31	53
		995	28	274	60	22	390	36	12	35	57
		1002	19	269	65	24	375	35	15	44	60
		1083	15	264	63	24	375	31	13	43	57
	P. banksiana			_•.				-			-
		1103	26	290	63	22	405	35	15	43	64
		1104	21	272	80	29	360	32	18	56	73
								-			
PAT		999	26	341	67	20	445	55	18	33	80
		998	35	337	81	24	470	55	21	38	92
		1003	22	334	68	20	430	52	20	39	100
		1059	30	327	76	23	425	51	19	37	87
		1013	23	324	49	15	395	57	14	25	92
	P. banksiana							-			
		1105	20	406	61	15	520	72	14	20	100
		1102	17	367	81	22	480	61	17	28	95
		1104	30	343	77	22	490	53	18	35	92
LOT		983	32	312	74	24	400	51	21	41	82
		1006	32	312	90	29	440	56	26	47	100
		1003	28	304	88	29	415	46	23	50	83
		1082	31	302	83	27	500	48	20	42	92
		1000	29	301	79	26	420	47	20	43	78
	P. banksiana	.000		331	. 0	_0	0	•••	_0	10	. 0
	Sai moiaria	1102	31	364	72	20	495	65	21	33	119
		1102	30	355	83	23	480	64	25	40	103
		1105	30	355	82	23	465	63	26	41	115
		1103	35	347	68	23 19	445	57	21	37	100
		1104	32	334	73	22	440	58	24	41	113

Tableau 9 (fin). Hauteur et DHP à 10 ans, à chaque site, des cinq meilleures provenances de *Pinus contorta* et des provenances témoins de *Pinus banksiana*

		N°	Nombre	Hauteur	Ecart-	Coefficient	Hauteur	DHP	Ecart-	Coefficient	DHP
Site		prove-	d'obser-	moyenne	type	de	maximum	moyen	type	de	maximum
d'expé-		nance	vations			variation				variation	
rience				(cm)	(cm)	(%)	(cm)	(mm)	(mm)	(%)	(mm)
VER		1003	23	337	61	18	440	55	15	28	75
		997	26	330	47	14	390	59	16	26	90
		995	19	323	58	18	410	53	18	35	85
		998	26	316	50	16	440	51	14	27	80
		999	27	305	76	25	420	52	18	36	80
	P. banksiana										
		1104	30	413	52	12	490	72	17	24	110
		1105	24	405	60	15	520	72	18	25	95
		1106	21	391	83	21	500	66	22	33	95
		1107	23	380	59	15	460	65	19	29	105
IMA ⁺		1010	24	249	70	28	350				
		1047	25	240	66	27	390				
		1091	28	238	67	28	365				
		1008	31	236	69	29	390				
		987	28	235	63	27	430				
	P. banksiana										
		1106	19	211	73	35	330				
		1102	21	205	52	25	300				
		1107	29	205	70	34	360				
		1105	17	190	71	37	360				
		1104	25	175	54	31	270				

⁺ Données prises à 12 ans.

Nombre d'observations : 14 arbres et plus par provenance.

Données prises à 13 ans.

¹ Sites d'expérience : Chibougamau (CHI), Labrieville (LAB), Lac-Saint-Ignace (IGN), Dablon (DAB), Gaspé (GAS), Bonaventure (BON), Parke (PAR), La Patrie (PAT), Lotbinière (LOT), Verchères (VER) et Îles-de-la-Madeleine (IMA).

3.3 Caractéristiques de forme et de branchaison

La provenance est un facteur déterminant de la productivité de l'espèce et de la qualité de la tige. Des observations menées à Bonaventure et dans d'autres tests montrent qu'il y a peu de variation, entre les provenances de *Pinus contorta*, pour la rectitude de la tige, de sorte que nous n'avons pas tenu compte de cette variable dans l'étude. Cette espèce est remarquable pour la rectitude de la tige. Des données ont plutôt été prises sur la présence de tiges multiples, de fourches et de flèches multiples, sur toutes les provenances, à tous les sites. D'autres données sur les caractéristiques de branchaison, de 24 provenances classées parmi les meilleures sur au moins un site, ont été prises (figure 43).

3.3.1 Fourches, flèches et tiges multiples

Plusieurs facteurs sont liés de près à la formation de ces caractéristiques morphologiques indésirables. Parmi les principaux facteurs identifiés, mentionnons : le défaut d'adaptation de plusieurs provenances aux sites de plantation et la présence de certains insectes perceurs. Le pourcentage d'arbres avec tiges multiples, fourches et flèches multiples varie de façon significative entre les sites (figure 44). Il y a moins d'arbres avec fourches et tiges multiples à Bonaventure qu'ailleurs: au total. 2 % seulement des arbres sont affectés. À Lotbinière, le nombre d'arbres avec fourches atteint 44 % du nombre total d'arbres vivants à 10 ans et aux Îles-de-la-Madeleine, le nombre d'arbres avec tiges multiples est de 66 % à 12 ans. Le nombre élevé d'arbres avec fourches à Lotbinière est attribuable en partie au défaut d'adaptation de certaines provenances mais surtout à des attaques répétées du charançon du pin blanc (Pissodes strobi [Peck.]). Les premiers dégâts, c'est-à-dire la mortalité de la flèche terminale, ont été observés vers l'âge de 6 ans et à cet âge, la majorité des arbres atteints avaient une hauteur supérieure à 1,30 m, ce qui explique le nombre élevé de fourches. À l'exception du site des Îles-de-la-Madeleine, le pourcentage d'arbres avec fourches, par variété, était à peu près le même (figure 45). Le nombre élevé de tiges multiples aux Îles-de-la-Madeleine est attribuable à la fois au défaut d'adaptation des provenances à ce site et à des attaques répétées du perce-pousse européen du pin (Rhyacionia buoliana [Schiff.]). La croissance en hauteur à ce site est plus lente qu'à Lotbinière; la majorité des arbres ont été affectés avant d'atteindre une hauteur de 1,30 m aux Îles-de-la-Madeleine, ce qui explique le nombre plus élevé de tiges multiples

que de fourches. Le pourcentage d'arbres affectés par le charançon du pin blanc et le perce-pousse européen du pin est présenté au tableau 10. Aucun arbre n'a été affecté par le charançon du pin blanc aux sites de Chibougamau, Lac-Saint-Ignace, Gaspé, Bonaventure et des Îles-de-la-Madeleine. Les populations d'insectes sont peu élevées à ces endroits; des dommages ont déjà été observés sur le pin blanc à l'est de Rimouski et à l'ouest de Gaspé (LACHANCE et al. 1990) tandis que plus au nord, les dommages sont limités surtout au sud du Lac-Saint-Jean et de Val-d'Or (J. DOMINGUE¹).

Le nodulier du pin gris (Petrova albicapitana [Busck]) est présent dans plusieurs dispositifs. Le pourcentage d'arbres atteints par cet insecte est parfois élevé et sa population peut augmenter ou diminuer rapidement au fil des ans. La chenille annelle partiellement ou totalement les pousses latérales de l'année. Lorsque la flèche terminale est attaquée, ce qui se produit dans 2 à 5 % des cas des arbres atteints, il peut y avoir formation de fourches, flèches et tiges multiples, si la flèche se dessèche ou s'il y a bris par le vent ou la neige. Lorsque la population devient très élevée, comme à Lotbinière, où l'on a dénombré jusqu'à 170 insectes par arbre à l'âge de 11 ans, la vigueur de l'arbre se trouve affectée par la mortalité de plusieurs pousses latérales.

Le pourcentage d'arbres avec tiges multiples est beaucoup plus élevé sur tous les sites pour la variété *murrayana*, que pour les variété *latifolia* et *contorta;* la variété *latifolia* à moins de tiges multiples que la variété *contorta* (figure 46). Pour les provenances avec défaut d'adaptation, la dessiccation prononcée et répétée des aiguilles occasionne, entre autres, la mortalité du bourgeon de la pousse terminale. La formation de tiges multiples apparaît après quelques années seulement de croissance en plantation.

D'autres agents déprédateurs (tableau 9) qui affectent surtout la croissance et la survie des arbres ont été inventoriés dans les tests. Des conditions favorables au développement du chancre scléroderrien du pin *(Gremmeniella abietina* [Lagerb.] Modelet) se retrouvent sur les sites de Lac-Saint-Ignace, Gaspé et Bonaventure. Ces conditions favorables seraient une période d'une cinquantaine de jours, pas nécessairement successifs, où la température serait autour de 0 °C (± 5 °C) (LAFLAMME 1991). Le pourcentage d'arbres atteints, c'est-à-dire qui présentent un symptôme actif de la maladie, soit le feuillage rougi ou

-

¹Communication personnelle.

un chancre au tronc, à Lac-Saint-Ignace, Gaspé et Bonaventure, est respectivement de 86, 61 et 21. L'échelle d'évaluation de l'importance de la maladie utilisée (BOULET et al. (1994) montre que 40, 27 et 6 % des arbres atteints à ces endroits présentent un chancre au tronc ou ont plus de 25 % des branches primaires affectées.

Le charançon du collet du pin (Hylobius radicis Buch.) est un insecte de type rongeur qui affecte 2 % des arbres à 9 ans aux Îles-de-la-Madeleine et 13 % des arbres à 10 ans à Chibougamau. Il réduit la croissance de l'arbre et cause souvent sa mort. Il se manifeste surtout dans les plantations situées sur des sites de qualité inférieure (COMTOIS 1988); à Chibougamau toutefois, la cause probable serait une accumulation de terre au-dessus du collet des arbres plantés dans des creux.

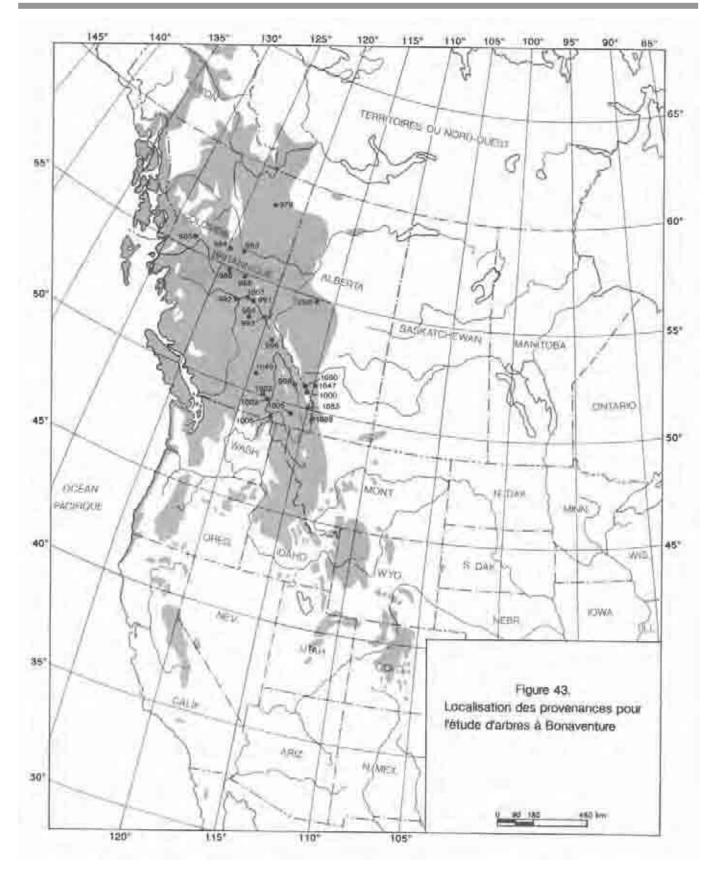
En général, le pourridié-agaric peut causer environ 2 % de mortalité dans les plantations de pin gris et de pin de Murray au cours des premières années de croissance. À Dablon, cette mortalité a été beaucoup plus importante qu'ailleurs, soit 16 %. Il est possible que des conditions plus favorables au développement de la maladie se rencontrent sur ce site où nous avons remarqué également une mortalité assez élevée des arbres dans les plantations de mélèze voisines du test.

Les rouilles sont surtout présentes dans les dispositifs de Bonaventure et de Gaspé. Même si 25 % des arbres à Bonaventure sont atteints par la rouille des aiguilles du pin (Coleosporium asterum [Diétel] Syd. P. Syd.), le pourcentage moyen du feuillage atteint par arbre est très faible et se situe à près de zéro. La rouille-tumeur noduleuse (Cronartium comptoniae Arth.) et la rouille-tumeur autonome (Endocronartium harknessii) ont fait peu de dommages aux arbres; le pourcentage d'arbres atteints d'un chancre au tronc ou à plus de 25 % des branches primaires varie de 0 à 2 % seulement.

On trouve le champignon saprophyte *(Cytospora spp.)* à Bonaventure, Gaspé et Lotbinière. Même s'il est présent sur 31 % des arbres à Lotbinière, le pourcentage d'arbres atteints au tronc ou à plus de 25 % des branches primaires est nul.

On peut supposer que les dommages causés aux arbres par les insectes et les maladies seraient moindres si seules les meilleures provenances de *Pinus contorta*, déterminées à chaque site, étaient présentes. En effet, les arbres des provenances avec défaut d'adaptation sont plus susceptibles aux attaques des insectes et aux maladies, ce qui a pour conséquence

de créer des foyers de propagation des insectes ravageurs et des spores dans la plantation et d'affecter d'autant les meilleures provenances.


3.3.2 Rôle du polycyclisme et nombre de branches

La croissance annuelle chez *Pinus contorta* est caractérisée par plusieurs cycles successifs d'accroissement (croissance polycyclique). Sous nos conditions climatiques et pour les provenances en cause, le nombre annuel de cycles varie d'un à deux. Chaque accroissement (primaire et secondaire) correspondant à un cycle est précédé par un verticille. Lorsque le verticille n'est pas formé, ce qui se produit rarement, le nouveau cycle est identifié par une zone dépourvue d'aiguilles de quelques centimètres. Le second cycle correspond au développement d'un bourgeon d'hiver, dans lequel les articles des deux cycles se sont formés à l'automne de l'année n-1 (KREMER 1981).

Malgré le nombre peu élevé d'arbres étudiés de chaque provenance, il apparaît que toutes les provenances ont des accroissements polycycliques. Les données prises sur cinq années consécutives de croissance montrent que le nombre de cycles par provenance varie de 1,6 à 2,0 et que le nombre de cycles par arbre d'une même provenance varie de 1,2 à 2,0. Ces résultats confirment ceux de Thompson (1976, 1985), Cahalan (1981), Rehfeldt (1985), Fries et Lindgren (1986 dans O'Reilly et Owens 1988), à savoir que la variation dans le nombre de cycles est habituellement plus élevée entre les arbres qu'entre les provenances.

En moyenne, l'accroissement secondaire représente 32 % de l'accroissement annuel (tableau 10). Ce chiffre peut varier selon les années de 27 à 37 %. Sur une même station et avec les mêmes provenances, ce sont les variations climatiques annuelles qui déterminent principalement l'expression du polycyclisme (KREMER 1981). La fréquence des arbres ayant réalisé un accroissement secondaire varie selon les années de 81 à 93 % (tableau 11). En général, pour une provenance donnée, les arbres ayant une fréquence plus élevée d'accroissements secondaires ont une hauteur supérieure; cet avantage s'accumule sur plusieurs années. La fréquence des accroissements secondaires est correlée avec la croissance en hauteur (O'REILLLY et OWENS 1988).

En accord avec les résultats de O'REILLY et OWENS (1988), on observe que le nombre de branches par arbre peut être dans plusieurs cas étroitement lié, à la fréquence des accroissements secondaires. Le nombre moyen de branches des verticilles 6, 7, 8 est de 4,8, 5,0 et 5,2 respectivement

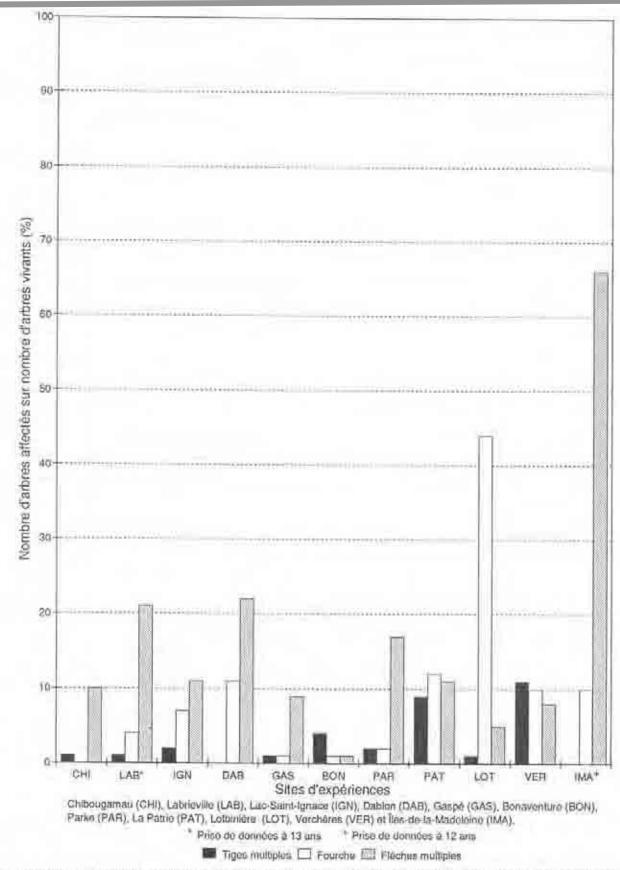


Figure 44. Pourcentage d'arbres avec tiges multiples, fourche et flèches multiples à chaque site d'expérience à 10 ans.

Figure 45. Pourcentage d'arbres avec fourche, par variété, à 10 ans à chaque site d'expérience.

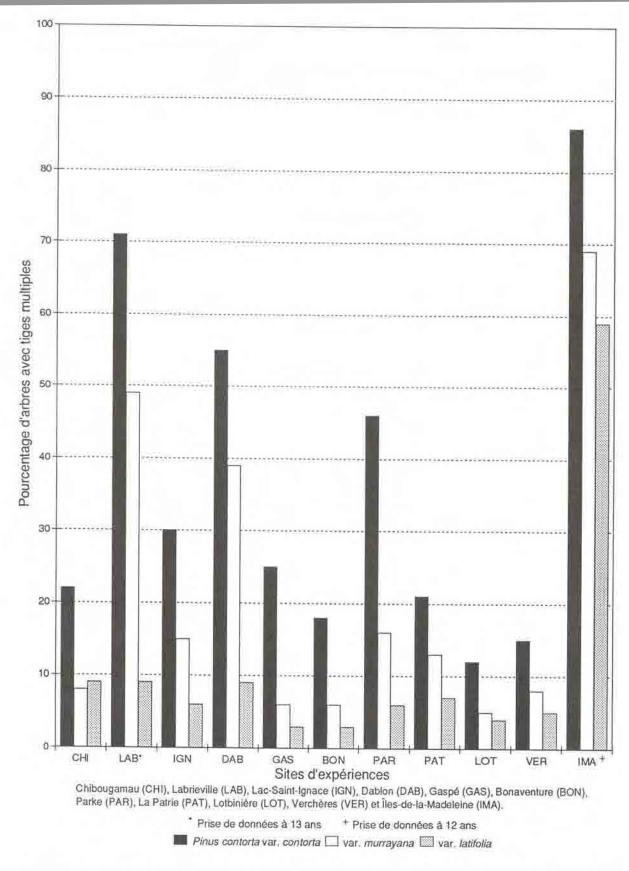


Figure 46. Pourcentage d'arbres avec tiges multiples, par variété, à 10 ans à chaque site d'expérience.

Tableau 10. Pourcentage d'arbres affectes par les Insectes et les maladies à chaque site à 12 ans

					Insectes, mal	nsectes, maladies et notes responsables	sejqesuodsa			
H. 10	Charangon u pin blanc	Noduller du pin gris	Perce-pousse europeen du oin	Chances	Charangon P du collet du pin	Pourridié-agario	Roulle des aiguilles	Roulle-tumeur noduletise	Roulle-tumeur Routlle-tumeur noduleuse autonome	Champignor saprophyte
Site	Pissodes	Petrova albicapitana	eju e	Gremmen/ella abienna	Hylobius	Armillana spp.	Coleosponum	Cronartium	Cronartium Endocronartium comptoniae harknessil	Cytospora
Chibougamau	0	30	0	4	13	-	0	0	0	0
abrieville	1	t		t		4.6	1	1	2	:
ac-Saint-Ignace	0	0	0	98	0	0	0	0	0	0
Dablon ²	G)	42	0	0	D	10	0	D	0	0
Gaspè	o	0	0	9	0	0	0	0	7	m
Bonaventure	0	29	0	53	0	-	53		in	9
Parke	w	17	C	υψ	0	0	0	0	0	0
a Patrie	-	ų	a	D	0	0	0	0	0	0
ofbinière	20	78	0	0	0	eri	0	0	0	50
Vercheles	27.	00	0	0	0	0	O	0	0	0
es-de-la-	0	o	16	0	67	0	0	D	o	а

Tableau 11. Moyenne des accroissements primaires et secondaires et fréquence d'expression du polycyclisme de 24 provenances à Bonaventure

Caractère		Annea de cr	DISSENDE ADRESID	In plantation	
	0	7	8	s.	10
Ail	24	30	31	35	31
Az	10	11	18	17	16
A2/(A1+A2)	58	27	37	33	8
u	84	81	63	84	83

Dormées prises à 9 ans.

Cormées prises à 10 ans.

Cormées prises à 11 ans

A₁ : Moyenne des accroissements primaires (cm) A₂ : Moyenne des accroissements secondaires (cm)

Ay/(A+-Az) - Rapport des moyennes des accroissements secondaires sur les moyennes des accroissements totaux (en %).

F : Fréquence (%) des arbres ayant réalisé un accrossement secondaire.

et le nombre moyen de branches situées à la base de chacun des accroissements secondaires correspondants est de 3,3, 3,5 et 3,6. Environ 41 % des branches sont produites lors des accroissements secondaires, ce qui concorde avec le résultat obtenu par O'REILLY et OWENS (1988), soit environ 44 %.

Le nombre cumulatif de branches, pour les années de croissance 6, 7 et 8, varie de façon significative (au seuil $\alpha=0,01$) entre les provenances. Ces résultats concordent avec ceux obtenus par O'REILLY et OWENS (1988). Le nombre cumulatif moyen de branches par provenance varie de 21,5 pour la provenance n° 1090 à 29,7 pour la provenance n° 1047, le nombre culumatif moyen de branches des 24 provenances étant de 25,2 (figure 47).

Le nombre cumulatif de branches entre les arbres varie de 13 à 43. La variation du nombre de branches est plus importante entre les arbres qu'entre les provenances. Les coefficients de variation correspondants sont de 18,8 et 8,1 %. D'après la figure 47, la variation du nombre de branches entre les arbres d'une même provenance est en général importante et peut, dans certains cas (n° 1006, 985, 993), passer du simple au double.

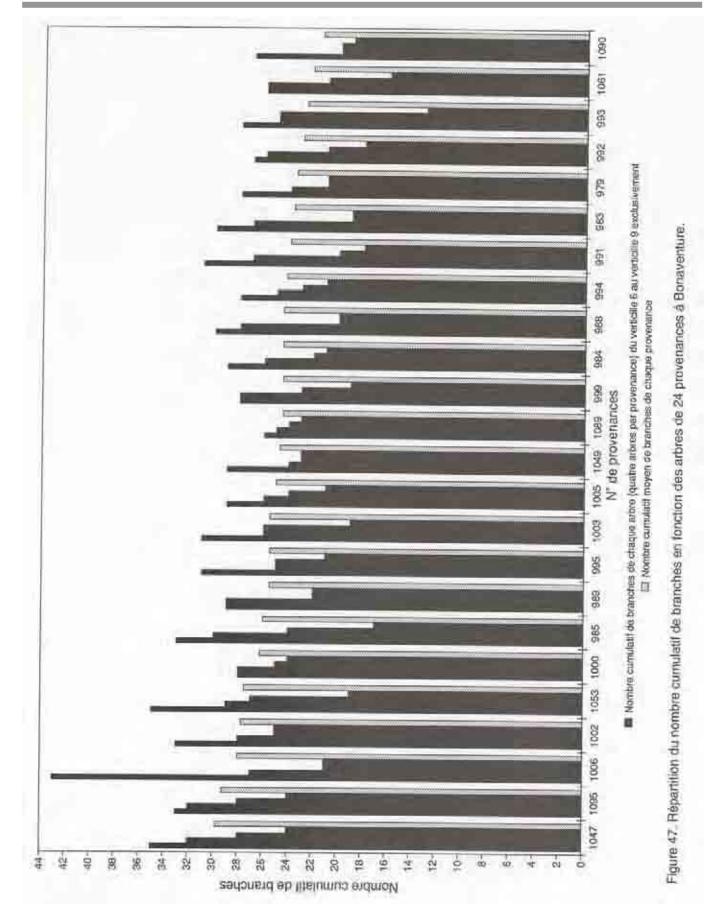
3.3.3 Diamètre des branches

Le diamètre moyen des branches situées à la base des accroissements primaires, pour les années de croissance 6, 7 et 8 après la plantation, est supérieur au diamètre moyen des branches situées à la base des accroissements secondaires pour les mêmes années de croissance. Pour chaque année de croissance, le diamètre moyen des branches des accroissements primaires est de 19,7, 21,0 et 20,4 mm tandis que la diamètre moyen des branches des accroissements secondaires est de 16,5, 14,3 et 17.3 mm.

Il n'y a pas de différence significative (au seuil α = 0,05) entre les 24 provenances pour le diamètre moyen des branches, qui varie entre les provenances, de 13,8 mm pour la provenance n° 985 à 21,4 mm pour la provenance n° 1006 (figure 48). Le diamètre moyen des branches de toutes les provenances est de 18,7 mm.

Le diamètre moyen des branches varie de façon plus importante entre les arbres qu'entre les provenances. Le plus petit diamètre moyen des branches d'un arbre (provenance n° 1002) est de 9,9 mm alors que le plus grand est de 31,3 mm (provenance n° 1003). Le coefficient de variation du diamètre moyen des branches entre les provenances est de 8,4 % alors qu'il est de 17,8 % entre les arbres. Le

diamètre moyen des branches des arbres d'une même provenance varie du simple au double dans certains cas (n° 1003, 1095 et 1002) alors que la hauteur des arbres comparés est semblable.


Les arbres des 24 provenances n'ont pas tendance à former de grosses branches et encore moins de branches adventives dont l'angle d'insertion au tronc est généralement plus aigu que celui des branches normales. Le diamètre des branches ne dépasse pas 40 mm et le nombre de branches dont le diamètre est plus grand ou égale à 35 mm représente moins de 1 % des 2415 branches mesurées sur les 96 arbres étudiés; la moitié des branches ayant ce diamètre provient d'un arbre de la provenance n° 1003.

3.3.4 Angle des branches

Il n'y a pas de différence significative (au seuil $\alpha=0.05$) entre les 24 provenances pour l'angle d'insertion des branches des verticilles situés à la base des accroissements primaires de 7 et 8 ans après la plantation. L'angle moyen des branches varie entre les provenances de 80.8° pour la provenance n° 1090 à 62.8° pour la provenance 995 (figure 49). L'angle d'insertion moyen des branches de toutes les provenances est de 74.6° .

L'angle des branches varie de façon beaucoup plus importante entre les arbres qu'entre les provenances. L'angle moyen des branches entre les arbres varie de 52,8° (provenance n° 995) à 90,7° (provenance n° 991). Le coefficient de variation de l'angle moyen des branches entre les provenances est de 5,3 %. L'angle moyen des branches peut varier de 20° à 30° entre les arbres d'une même provenance (n° 991, 988, 1053 et 999).

L'angle d'insertion des branches pour un arbre donné peut varier également de 20° à 30° mais très peu d'arbres présentent des branches dont l'angle est très aigu. Sur les 976 branches dont l'angle d'insertion a été mesuré, seules trois branches ont un angle d'insertion inférieur à 45°.

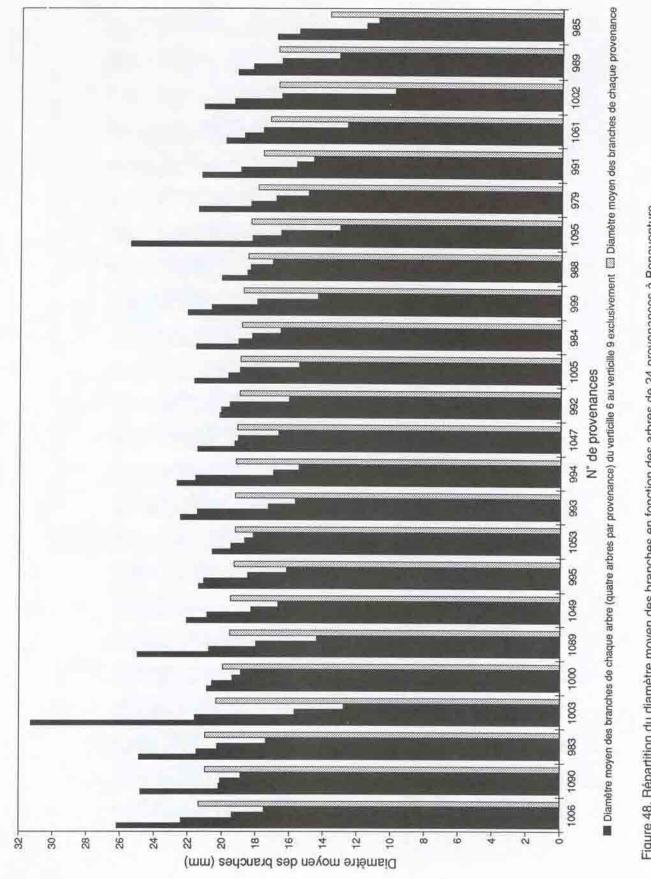
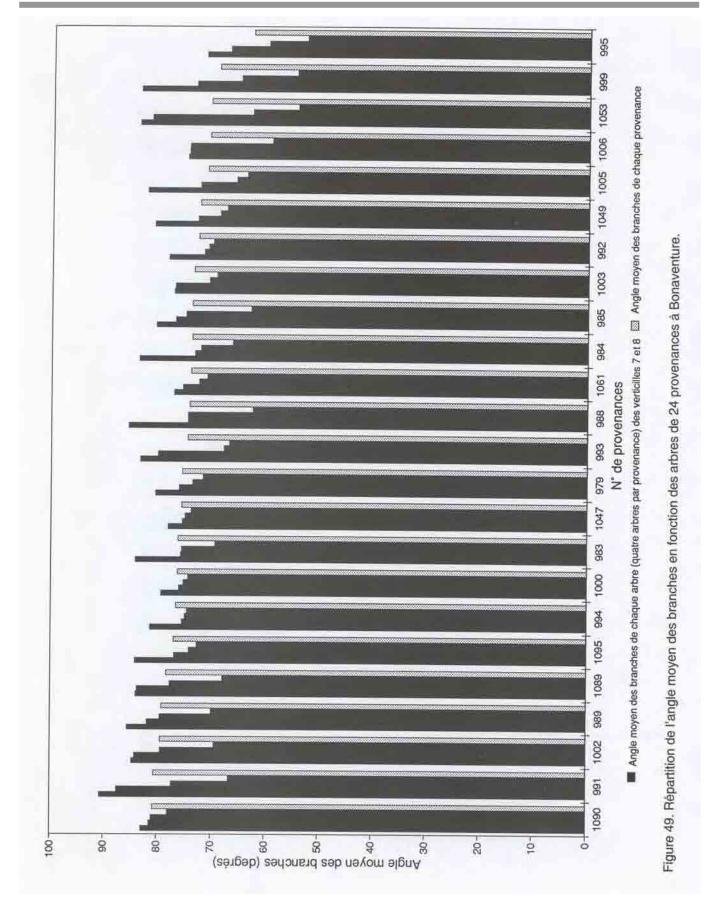



Figure 48. Répartition du diamètre moyen des branches en fonction des arbres de 24 provenances à Bonaventure.

Conclusion

Le taux de survie et la hauteur moyenne des provenances sont les variables utilisées pour mesurer l'adaptation des provenances à un site donné. La latitude, plus que la longitude et l'altitude, exerce une influence prépondérante sur le taux de survie et la hauteur moyenne des provenances, lorsque les provenances sont groupées par variété. Les modèles de régression montrent que, pour chaque variété, une diminution de la latitude entraîne généralement une diminution du taux de survie à tous les sites. L'augmentation de l'altitude améliore le taux de survie.

Le taux de survie et la hauteur moyenne des provenances sont liés très étroitement au degré de dessiccation hivernale des aiguilles. Les provenances des variétés contorta et bolanderi et les provenances de la variété murrayana situées en Californie ont un défaut d'adaptation aux sites de plantation et subissent au fil des ans une dessiccation répétée des aiguilles qui entraîne une défoliation des rameaux, une croissance en hauteur ralentie et une augmentation de la mortalité. Par contre, les provenances de la variété latifolia situées au nord du 49^e degré de latitude n'ont pas été affectées par la dessiccation hivernale des aiguilles, même durant la période de dessiccation sévère de 1990. Les autres provenances ont été affectées partiellement.

La hauteur des plants après deux ans de croissance en pépinière et la hauteur des arbres après deux ans en plantation ne sont pas des indicateurs sûrs pour prédire la hauteur moyenne des provenances à 10 ans. La sélection précoce des meilleures provenances peut se faire à partir de 6 ans sur les meilleurs sites et vers l'âge de 10 ans à Chibougamau, Labrieville et aux Îles-de-la-Madeleine, où les conditions climatiques limitent la croissance des arbres, même celle des meilleures provenances.

En général, pour l'ensemble des sites, les meilleures provenances sont situées en Colombie-Britannique et en Alberta, au nord du 49^e degré de latitude et à une altitude de 700 à 1700 m. Sur les sites les plus nordiques comme Chibougamau et Labrieville, les provenenaces situées au nord du 53^e degré de latitude et quelques provenances de l'Alberta situées à une altitude de 1400 à 1500 m et à une latitude de 50 à 51 degrés ont une meilleure performance en hauteur alors que sur les sites de La Patrie, Lotbinière et Verchères les provenances situées au nord du 57^e degré de latitude sont moins performantes qu'ailleurs. Les provenances nos 983, 988, 992, 995, 999, 1003 et 1006 se classent parmi les meilleures provenances sur les sites de Dablon, Gaspé, Bonaventure, Parke, La Patrie, Lotbinière et Verchères; elles occupent une mince bande, orientée sud-est, située sur le plateau du Fraser et dans les montagnes de Colombie-Britannique, entre le 49^e degré et le 56^e degré de latitude. L'altitude de ces provenances varie de 600 à 1000 m.

Les résultats de l'étude, pour neuf sites, nous permettent de regrouper les sites dont le classement des provenances est semblable, en trois groupes : un premier, formé des sites de Lac-Saint-Ignace, Dablon, Gaspé, Bonaventure, Parke et La Patrie, un second, formé des sites de Lotbinière et Verchères, puis un troisième, formé du seul site des Îles-de-la-Madeleine.

C'est sur les sites faisant partie du domaine climacique de la sapinière à bouleau blanc que le pin de Murray montre le plus de potentiel de production ligneuse (croissance et forme). Plus au nord de cette zone, les conditions climatiques sévères affectent de façon négative la survie et la croissance des arbres tandis que plus au sud de celle-ci, les arbres ont tendance à développer des fourches et des tiges multiples. Dans le domaine climacique de la sapinière

92 Conclusion

à bouleau blanc, les meilleurs résultats sont obtenus sur les sites où les populations d'insectes comme le charançon du pin blanc et le perce-pousse européen du pin sont absentes ou rares comme en Gaspésie, sur la Côte-Nord et au nord de Val-d'Or en Abitibi. À ces endroits, la hauteur moyenne des meilleures provenances de pin de Murray est d'environ 3 m à 10 ans. Cette hauteur est semblable à celle des provenances témoins de pin gris, mais la tige du pin de Murray est généralement plus droite. Pour les meilleures provenances, la présence de *Comptonia peregrina* ne semble pas augmenter le pourcentage d'arbres affectés par la rouille-tumeur noduleuse.

Toutes les provenances ont une croissance polycyclique et la variation du nombre de cycles est habituellement plus élevée entre les arbres (1,2 à 2,0 cycles) qu'entre les provenances (1,6 à 2,0 cycles). L'impact du polycyclisme sur la croissance annuelle est positif. En général, pour une provenance donnée, les arbres ayant une fréquence plus élevée de polycyclisme ont une hauteur supérieure. Par ailleurs, le polycyclisme occasionne un nombre plus élevé de verticilles et de noeuds qui déprécient davantage la qualité de la tige. Environ 41 % des branches sont produites lors des accroissements secondaires mais le diamètre moyen de ces branches est inférieur de 27 % à celui du diamètre moyen des branches des

accroissements primaires. La sélection des arbres à partir, entre autres critères, de la fréquence du polycyclisme sur plusieurs années de croissance n'est pas envisagée pour le moment.

On pourrait effectuer une introduction massive d'arbres des meilleures provenances, afin de constituer des populations de base ayant une bonne diversité génétique pour la production de graines en vue du reboisement et pour continuer l'amélioration génétique de l'espèce. Les plantations denses seraient réalisées sur les sites qui conviennent le mieux à l'espèce. L'éclaircie phénotypique des plantations serait faite en tenant compte principalement de la hauteur et du diamètre des arbres; le nombre, le diamètre et l'angle des branches seraient pris en considération compte tenu de la variation importante observée entre les arbres pour ces caractères. Entretemps, les besoins en graines pour le reboisement pourraient être comblés par une éclaircie génétique pratiquée dans les plantations conservatoires et les tests de provenances les plus intéressants. Des observations pourraient se poursuivre sur les arbres restants afin de mieux évaluer la résistance des provenances aux insectes, leur sensibilité aux maladies et le potentiel de croissance des meilleures provenances de cette espèce introduite.

Bibliographie

- ANONYME, 1988. *Biogeoclimatic zones of British Columbia*. Ministry of Forests, Research Branch, Victoria, British Columbia. Carte au 1:2 000 000.
- BOULET, B., C. PARADIS et G. RHÉAUME, 1994. Échantillonnage des insectes et des maladies associés aux arbres en milieu forestier. Édition provisoire. Gouv. du Québec, min. des Ressources naturelles, Dir. de la conservation des forêts, Div. des relevés. 195 p.
- Burns, R.M. et B.H. Honkala, 1990. Silvics of North America. Volume 1, Conifers. U.S.D.A. For. Serv., Washington, Agric. Hand. No. 654. 675 p.
- COMTOIS, B., 1988. *Notions d'entomologie forestière*. Notes de cours, Collège de Sainte-Foy, Québec. 214 p.
- CRITCHFIELD, W.B., 1957. *Geographic variation in Pinus contorta*. Maria Moors Cabot Foundation, Publ. No. 3. 118 p.
- GAGNON, H. et G. Numainville, 1991. Instructions pour la collecte informatisée des données dans les dispositifs. Min. des Forêts, Serv. de l'amélioration des arbres. Révisé. 26 p.
- GOUROU, P., F. GRENIER et L.-E. HAMELIN, 1967. *Atlas du monde contemporain.* Montréal, Éditions du Renouveau pédagogique. 107 p.
- KREMER, A., 1981. Déterminisme génétique de la croissance en hauteur du Pin maritime (Pinus pinaster Ait.) 1. Rôle du polycyclisme. Ann. Sci. forest. 38(2): 199-222.
- LACHANCE, D., C. MONNIER, J.-P. BÉRUBÉ et R. PAQUET, 1990. Insectes et maladies des forêts dans la région du Bas-Saint-Laurent/Gaspésie de 1936 à 1987. Service canadien des forêts, Centre de foresterie des Laurentides. Rapport d'information LAU-X-93. 223 p.

94 Bibliographie

La Farge, T., 1975. Correlations between nursery and plantation growth in slash and lobbolly pine. For. Sci. 21: 197-200.

- LAFLAMME, G., 1991. Le chancre scléroderrien des pins. Service canadien des forêts, Centre de foresterie des Laurentides. Feuillet d'information CFL3, révisé. 14 p.
- LAMBETH, C.C., 1980. *Juvenile-mature correlations in* Pinaceae *and implications for early selection.* For. Sci. 26: 571-580.
- LAMOUREUX, G., S. LAMOUREUX, R.F. GAUTHIER, S. BANVILLE et M.-E. CHARBONNEAU, 1993. Fougères, prêles et lycopodes. Guide d'identification Fleurbec. 511 p.
- LINDGREN, K., 1993. *IUFRO* Pinus contorta seed collections, distribution and publications. Dans: Dag Lindgren, éd. *Pinus contorta* from untamed forest to domesticated crop. Symp. Proc. of a Meeting with IUFRO Working Party S2.02.06. University of Agricultural Sciences, Umeå, Suède: 232-237.
- LINES, R., 1976. *IUFRO Working Party S2.02.06 Pinus contorta 7th Circular.* 7 p.
- LINES, R., 1976b. Pinus contorta *provenances studies*. Report of a IUFRO Working Party Meeting, Edinburgh, Scotland. Forestry Comm., Res. and Dev. Paper No. 114. 128 p.
- LINES, R., 1977. *IUFRO Working Party S2.02.06* Pinus contorta 8th Circular. 1 p.
- MAGNUSSEN, S. et C.W. YEATMAN, 1986. Accelerated testing of jack pine progenies: a case study. Dans: R.J. Weir, éd. Tree improvement theory and practice. Proceedings of the IUFRO Working Party on Breeding Theory, Progeny Testing and Seed Orchards, Oct. 13-17, Williamsburg, VA. North Carolina State University, Industry Cooperative Tree Improvement Program, Raleigh, N.C.: 107-121
- MIROV, N.T., 1967. *The genus* Pinus. University of California, Berkeley. Maria Moors Cabot Foundation. 602 p.
- O'REILLY, C. et J.N. OWENS, 1988. Polycyclic growth and branching in the upper crown in provenances of lodgepole pine. Can. J. For. Res. 19: 79-87.

- REHFELDT, G.E., 1988. *Ecological genetics of Pinus contorta from the Rocky Mountains (USA): a synthesis.* Silvae Genet. 37: 131-135.
- Service de L'environnement atmosphérique, 1982a. Normales climatiques au Canada, vol. 6 : gel 1951-1980. Environnement Canada, Ottawa. 276 p.
- SERVICE DE L'ENVIRONNEMENT ATMOSPHÉRIQUE, 1982b.

 Normales climatiques au Canada, Vol. 4 : degrésjours 1951-1980. Environnement Canada, Ottawa. 280 p.
- Service de L'environnement atmosphérique, 1982c. Normales climatiques au Canada : températures et précipitations 1951-1980. Environnement Canada, Ottawa. 216 p.
- SINCLAIR, W.A., H.H. LYON et W.T. JOHNSON, 1987. Diseases of trees and shrubs. Cornell University Press, N.Y. 575 p.
- STEEL, R.G.D. et J.H. TORRIE, 1980. *Principles and procedures of statistics. A biometrical approach.* Second edition. McGraw-Hill. 633 p.
- THIBAULT, M., 1985. Les régions écologiques du Québec méridional (Deuxième approximation). Gouv. du Québec, min. de l'Énergie et des Ressources. Serv. de la rech. et Serv. de la carto. Carte au 1 : 1 250 000.
- YING, C.C., 1991. Performance of lodgepole pine provenances at sites in Southwestern British Columbia. Silvae Genet. 40(5/6): 215-223.
- YING, C.C. et Q.W. LIANG, 1993. Geographic variation of lodgepole pine within the species coastal range. Dans: Dag Lindgren, éd. Pinus contorta from untamed forest to domesticated crop. Symp. Proc. of a Meeting with IUFRO Working Party S2.02.06. University of Agricultural sciences, Umeå, Sweden: 409-416.
- YING, C.C., C.T. THOMPSON et L. HERRING, 1989. Geographic variation, nursery effects, and early selection in lodgepole pine. Can. J. For. Res. 19: 832-841.

La qualité du matériel de reboisement est une des responsabilités du secteur Forêts du ministère des Ressources naturelles. Le reboisement au moyen d'une espèce exotique comme le pin de Murray exige, pour bien remplir ce rôle, une évaluation des différentes sources de graines afin de choisir celles qui sont les mieux adaptées et les plus productives. La Direction de la recherche forestière a donc mis en place des tests de provenances multistationnels afin d'identifier les meilleures provenances pour différentes régions écologiques du Québec.

Gouvernement du Québec Ministère des Ressources naturelles ISBN 2-550-25128-8 ISSN 1183-3912 F.D.C. 232.1(047.3)(714) L.C. SD 399.5 .P585

RN95-3092