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Abstract
Purpose of Review  Intensive forest management practices are being implemented worldwide to meet future global demand 
for wood and wood products while facilitating the protection of natural forest ecosystems. A potential decline in wood prop-
erties associated with rapid tree growth makes it essential to quantify the potential impact of intensive management on the 
process of wood formation and, in turn, on its suitability for various end-uses.
Recent Findings  Wood produced over short rotations is generally of lower quality because wood properties tend to improve 
with cambial age (i.e. the number of annual growth rings from the pith). The intensification of silvicultural practices can thus 
have measurable consequences for the forest products value chain. The use of new planting material from tree improvement 
programs could offset such effects, but questions arise as to the effects of a changing climate on wood produced from these 
plantations and the best silvicultural approaches to manage them.
Summary  Based on these recent findings, we provide reflections on the need for a modelling framework that uses the effects 
of cambial age, ring width and position along the stem to summarise the effects of tree growth scenarios on wood properties. 
We then present challenges related to our limited understanding of the effects of several drivers of wood properties, such as 
climate variation, genetic material, and forest disturbances, among others, and highlight the need for further data collection 
efforts to better anticipate the quality attributes of the future wood fibre resource. We conclude by providing examples of 
promising new tools and technologies that will help move wood quality research forward by allowing (1) fast, efficient char-
acterisation of wood properties, and (2) up-scaling predictions at the landscape level to inform forest management decisions.

Keywords  Wood quality · Intensive forest management · Silvicultural treatments · Plantation · Conifers · Future challenges

Introduction

Commonly understood definitions of intensive forest man-
agement practices have been in use for over 70 years [1], 
with adjustments made over subsequent decades by special-
ists in various sub-disciplines. However, most definitions 
in use today [2–7] converge around the principle that sil-
vicultural treatments can be used to maximise wood and 
timber production. These silvicultural treatments include 
plantations of hybrid or fast-growing tree species (e.g. [8]), 
respacing (e.g. [9]), thinning (e.g. [10]), pruning (e.g. [11]), 
fertilisation (e.g. [12]), and vegetation control (e.g. [13])—
with or without herbicides, insecticides or biocontrol of 
pests (e.g. [14]).

Currently, the most commonly mentioned solution in the 
scientific literature to meet future global demand for wood 
while allowing the protection of natural forest ecosystems 
relates to increasing wood supply from plantations [2, 7]. 
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Several jurisdictions around the world integrate the use of 
planted forests into their strategy for forest conservation 
[15–20]. As the adoption of intensive forest management 
practices increases, it is essential to consider their potential 
impact on the process of wood formation and, in turn, on 
wood quality. Indeed, silvicultural practices often result in 
important changes in growth patterns and tree form, which 
can lead to variability in wood properties, thereby influenc-
ing suitability for various end-uses [21, 22].

Pioneering work from Philip R. Larson in the 1960s [23] 
described the physiological processes underlying the delete-
rious effects of rapid growth on wood properties and empha-
sised that the concept of wood quality must consider specific 
end-uses. According to this principle—highlighted by many 
authors in recent years—the definition of wood quality may 
vary according to the desired end-product [24–28]. For the 
timber industry, for example, criteria such as wood density, 
relative proportions of heartwood and sapwood, proportion 
of juvenile wood (also referred to as corewood) and reaction 
wood, knots (size, status, frequency, etc.) and grain orienta-
tion are the most important to consider, while for the pulp 
and paper industries, fibre length, wood cell properties and 
chemical composition are the most relevant [29].

To better anticipate the consequences of silvicultural 
choices on future wood supplies, there is a need to under-
stand the drivers of variation in wood properties [2, 25]. In 
turn, such knowledge can help increase supply chain produc-
tivity and improve economic performance.

The intensification of silvicultural practices has meas-
urable consequences for the forest products value chain. 
In the USA, for example, serious concerns were raised 
in 2010 regarding the bending design values for south-
ern pine lumber from planted forests, which were found 
to be significantly lower than those obtained from natu-
ral forests. Consequently, the Southern Pine Inspection 

Bureau issued new reduced design values for some grades 
of southern pine dimension lumber [30]. This allowed the 
construction industry to use lumber from planted forests 
under revised building codes [31]. Such adjustments fur-
ther highlight the relative nature of the wood quality con-
cept; not only does it vary according to different end-uses, 
but it can also evolve over time for a specific product.

With this reality in mind, we aimed to assemble cur-
rent knowledge on the effects of intensive silvicultural 
practices on important wood properties. This way, readers 
can interpret the information provided based on their own 
understanding of wood quality. Our review builds upon 
previous review papers on the effect of silvicultural treat-
ments on wood properties [25–29, 32–34]. Here, we focus 
more specifically on the effects of intensive silviculture on 
wood properties with an emphasis on coniferous species 
from around the world.

In line with current definitions of intensive forest man-
agement, papers considered in this review investigated the 
effects of ‘initial spacing’ thinning, respacing, pruning, 
fertilisation, site fertility, or genetics on wood properties. 
We used Google Scholar as our chosen search engine, 
as a preliminary comparison had shown it was the most 
inclusive among similar tools. The search terms included 
the following keywords: ‘the effect(s) of’, plus ‘initial 
spacing’, ‘thinning’, ‘respacing’, or ‘pruning’, ‘fertiliza-
tion’ or ‘site fertility’ or ‘genetic(s)’ plus ‘wood proper-
ties’, ‘mechanical properties’, ‘wood density’, ‘lumber’, 
or ‘microfibril angle’, plus ‘plantation’. Once the search 
was completed, titles and abstracts of highlighted papers 
were sifted, and only relevant studies were included in the 
review. Main results from the retained papers were then 
summarised in the form of tables or graphs to facilitate 
the analysis. Figure 1 shows the location of each study 
included in this review.

Fig. 1   Geographic location of 
the research articles used in 
this review. If provided, the 
geographic coordinates of the 
study location were extracted; 
otherwise, we used the names 
of the location provided in the 
paper and extracted the coordi-
nates for the studied area
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The review is divided into four main sections. The first 
section summarises current knowledge on the effects of 
intensive forest management practices on wood properties. 
It is based on the main research findings extracted from the 
relevant empirical studies retained from our literature search. 
The subsequent sections provide reflections on (i) current 
knowledge gaps and future challenges, (ii) the need for a 
modelling framework to summarise the effects of intensive 
management practices on future wood properties under a 
changing climate and (iii) the emerging technologies in 
wood characterisation and utilisation that will help move 
wood quality research forward. We conclude by highlight-
ing the detrimental effects of a decreasing age at harvest on 
wood quality and its implications for future production and 
processing.

Current Knowledge on the Effects 
of Intensive Forest Management Practices 
on Wood Properties

Initial Spacing

The choice of initial spacing at planting has an important 
effect on the secondary growth of trees, wood properties and 
volume production. Traditionally, the most common spac-
ing used for conifer species was set at approximately 2 m in 
an orthogonal grid, which is equivalent to ~ 2500 seedlings 
per hectare [34–36]. However, in recent decades planting 
distances have tended to increase to encourage faster radial 
growth, leading to shorter rotations [34, 37–40] and reduc-
tion in establishment costs [41, 42]. In New Zealand, for 
example, typical stocking rates are now around 1,000 seed-
ling per hectare, which represents an average square spacing 
of 3.2 m [43].

However, trees planted and grown at wider spacings gen-
erally have larger crowns that produce a larger juvenile core 
[32, 34, 39, 44, 45], which contains wood with lower den-
sity, higher MFA [46, 47] (Fig. 2, Table 1), larger knots [34, 
37, 39, 48–50], greater stem taper [34, 51], increased stem 
curvature [52], and poor stem straightness in the bottom log 
[47, 52]. The greater presence of sweep and leaning stems in 
a stand have also been associated with increased production 
of compression wood [34], which is associated with high 
longitudinal shrinkage and a greater propensity to sudden 
failure under loads than normal wood [53]. These changes 
in tree morphology and wood properties may eventually alter 
sawing patterns and thus affect sawmill recovery and effi-
ciency [47, 54–56].

Wider spacings are generally associated with lower modu-
lus of elasticity (MOE) and modulus of rupture (MOR) in 
coniferous species [37, 46–48, 50, 55, 57] (Fig. 2, Table 1). 
The effect of wide spacing on wood density, however, is often 

less severe and varies among species. For example, lower 
wood density was associated with wider spacings in jack pine 
(Pinus banksiana Lamb.) [58], Scots pine (Pinus sylvestris 
L.), Norway spruce (Picea abies (L.) Karst.) [57] and patula 
pine (Pinus patula Schiede ex Schltdl. et Cham.) [47]. Other 
studies revealed only slight reductions in wood density at wide 
spacings in Norway spruce [59], black spruce (Picea mariana 
(Mill) B.S.P.) [50], and white spruce (Picea glauca (Moench) 
Voss) [37]. Finally, wood density did not vary significantly 
with spacing in Sitka spruce (Picea sitshensis (Bong.) Carr) 
[60], radiata pine (Pinus radiata D. Don) [46], Japanese cedar 
(Cryptomeria japonica) [48], young jack pine [39] and west-
ern hemlock (Tsuga heterophylla (Raf.) Sarg) [61] (Fig. 2, 
Table 1). As can be seen from the jack pine studies [39, 58], 
these effects also vary according to tree age.

Most research findings indicate a decrease in fibre length 
[44, 46, 58, 61] with increased spacing (Fig. 2, Table 1), 
with the exception of white spruce [45]. A reduction in cell 
wall thickness at wider spacings has also been reported in 
radiata pine [46].

While the adverse effects on wood quality attributes of 
planting at wider spacing are well documented, on some 
occasions this practice may also be beneficial. For example, 
on low fertility sites, or under serious drought conditions, 
wider spacing between trees can be advantageous, as more 
nutrients and water could be available to individual trees [62].

Thinning and Respacing

Thinning and respacing are intermediate treatments used 
to favour vigorous, healthy trees, which most likely will 
increase in size due to accelerated radial growth, thereby 
improving economic returns [34, 63]. Respacing (or pre-
commercial thinning) is applied to young stands before 
canopy closure and generally before individual stems have 
reached merchantable size. The effects of respacing on 
wood properties are comparable to those of initial spacing 
[9, 64–67] (Table 2). Commercial thinning, in contrast, is 
usually applied to older stands after canopy closure, which 
corresponds, more or less, with the time of death of the low-
est branches. Its effects on wood supplies are twofold. First, 
trees removed during thinning operations may include trees 
with low vigour and poor stem form, among other defects. 
Second, thinned trees are often of lower quality because they 
have not reached maturity and may thus contain a higher 
proportion of corewood [22]. However, little research has 
been dedicated to quantifying the specific properties of 
thinned stems. Instead, most work has focused on the effects 
of thinning on the properties of the crop at final harvest. Due 
to their older age and acceleration of radial growth at a later 
stage, commercial thinning may lead to a lower proportion 
of corewood in the remaining trees [68], while having little 
effect on knot size [34, 63].
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The timing and intensity of thinning or respacing treat-
ments are thus critical, as implementing them too early or 
too aggressively may result in lower wood density [9, 69, 
70], larger knots [65, 67, 71], inferior mechanical properties 
[65, 72], shorter fibres [73] and lower grade lumber [10, 65], 
all of which have been reported in trees grown at excessively 
wide initial spacing (> 2.5 m, Fig. 2).

When thinning treatments are applied optimally, the 
impact on structural wood quality or chemical composi-
tion can either be negligible [74–78], minor [69, 79], or 
even beneficial [80]. Likewise, the production of compres-
sion wood has both been reported to increase [64, 81] or 
decrease [75] after thinning (Table 2). Results of the latter 
study were interpreted as a potential response to phototro-
pic stimuli, which might favour the inclination of stems 

as trees compete for space in unthinned stands. Compared 
with unthinned stands, trees in thinned stands may have 
the advantage to exhibit accelerated self-pruning of dead 
branches, because of the increased effects of wind, rain, 
snow, and solar radiation inside the stand [82, 83]. In con-
trast, thinning may contribute to a faster lateral expansion 
of the tree crown [84]. Thinning has also been reported 
to stimulate the formation of epicormic branches in Sitka 
spruce, especially when combined with a high lift pruning 
treatment [85].

Pruning

Artificial pruning is used to increase the length of the knot-
free section of a log, which can increase both mechanical 

Fig. 2   Variation of MFA (degrees), MOE (MPa), MOR (MPa), wood density (g cm−3) and fibre length (mm) along different initial planting den-
sities for different published studies
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Table 1   Additional information related to the references cited in Fig. 2

Figure Reference Species Age Supplementary information

MFA [47] Patula Pine 13 MFA for year 13 extracted from Fig. 4b, p. 252. MFA 
measured with Silviscan. Trees were pruned at 5, 7 and 
9 years old

[48] Japanese cedar 30 MFA for year 30 extracted from Fig. 7, p. 383. MFA meas-
ured with iodine method

[46] Radiata pine 10 MFA for year 10 extracted from Fig. 1a, p. 1927. MFA 
measured with Silviscan

MOE and MOR [55] Patula pine 18 Data obtained from Fig. 4, p. 6. Static bending properties 
measured on boards. Results from board position 2 are 
reported

[37] White spruce 60 Data extracted from Table 22, p. 22. Static bending proper-
ties tested on board of different dimensions

[39] Jack pine 25 Data extracted from p.9 of the manuscript. Static bending 
properties tested on small clear specimens

[48] Japanese cedar 35 Data extracted from Table 4, p. 385. Static bending proper-
ties measured on boards

[46] Radiata pine 11 Data extracted from Table 2, p. 1926. Tested by resonance 
with HM-200

[50] Black spruce 48 Data extracted from Table 6, p. 466. Static bending proper-
ties tested on board of different dimensions

[57] (NS) Norway spruce 35 Data extracted from Table 4, p. 6. Static bending properties 
measured on smaller size boards

[57] (SP) Scots pine 35 Data extracted from Table 4, p. 6. Static bending properties 
measured on smaller size boards

Wood density [60] (Cloacaenog) Sitka spruce 45 Data extracted from Table 2, p. 338. Values obtained from 
board samples taken from battens

[60] (Loughermore) Sitka spruce 28 Data extracted from Table 2, p. 338. Values obtained from 
board samples taken from battens

[37] White spruce 60 Data extracted from Table 22, p. 22. Values reported at the 
DBH level

[47] Patula pine 13 Data extracted from Fig. 4b for year 13, p. 252. Trees were 
pruned at 5, 7 and 9 years old

[39] Jack pine 25 Data extracted from Fig. 5a for year 25, p. 9. Values 
reported at the stump level

[48] Japanese cedar 35 Data extracted from Fig. 5 for year 35, p. 381. Values 
reported at 1.2 m high

[59] Norway spruce 30 Data extracted from Fig. 1, p. 21. Values at the stump 
level. Two thinning treatments were applied

[58] Jack pine 60 Data averaged from Fig. 3, p. 458. Values reported at DBH 
level

[46] Radiata pine 10 Data extracted from Fig. 1c, p. 1927. Values reported at 
the DBH level

[57] (NS) Norway spruce 35 Data extracted from Table 2, p. 6. Values obtained from 
board samples coming from the bottom logs

[57] (SP) Scots pine 35 Data extracted from Table 2, p. 6. Values obtained from 
board samples coming from the bottom logs

[61] Western hemlock 38 Data extracted from Table 1, p.2463. Values reported at 
DBH level

[50] Black spruce 48 Data extracted from Table 12, p. 472. Values obtained 
from samples taken from lumber

Fibre length [58] Jack pine 60 Data extracted from Table 2, p. 461. For tree DBH = 18 cm 
and H-factor = 1500

[46] Radiata pine 11 Data extracted from Table 2, p. 1926. Fibre length was 
obtained by maceration

[61] Western hemlock 38 Data extracted from Table 3, p. 2466
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properties [34, 86, 87] and lumber value [33], especially in 
the most valuable lowest log of elite trees [32, 88]. Knots 
cause local grain deviation in wood [89], which can cause 
reduced wood stiffness and strength [86, 87]. A key effect of 
artificial pruning is to considerably shorten the time required 
to complete branch occlusion. This leads to fewer loose 
knots (i.e. knots formed after branch death). For example, 
the occlusion time for Norway spruce branch stubs can reach 
50 years or more under self-pruning conditions [90], while 
it can occur after 4 to 12 years in pruned trees (2-cm-thick 
branch wounds) [89].

Usually, artificial pruning of branches is implemented on 
the lowest branches at an early age, i.e. when they are small, 
healthy and covered by a thin layer of bark [91]. Early inter-
vention is recommended to minimise the problems of infec-
tions and to facilitate rapid occlusion [32, 91]. However, 
pruned trees can be more susceptible to damage from brows-
ing, or bark stripping and fraying, than unpruned trees [89]. 
Consequently, the density of ungulate populations should 
be considered before applying pruning treatments [89, 92].

Other than damage from wildlife, several other fac-
tors may influence the response of trees to pruning. These 
include timing (i.e. seasonality), site fertility, soil moisture 
availability, climate, tree age, species, the tools used and 
pruning height [93, 94]. According to Zobel [32], the opti-
mum time for pruning is when the tree has reached about 
12 cm in diameter at breast height. While Zobel [32] rec-
ommended removal of 33% of the live crown, more recent 
studies have shown it is possible to remove 50% of the live 
crown without a significant reduction in radial growth [11, 
95, 96] or height growth [95]. However, lift pruning height 
has also been associated with the development of numerous 
epicormic sprouts, which can vary importantly according 
to species [85]. As highlighted in the same study, the rel-
evance of using such a treatment should be considered care-
fully as pruning is a very expensive treatment that could end 
up costing two to three times the cost of thinning a stand. 
When applied, the frequency and severity of pruning treat-
ments should be planned to allow for crown recovery and to 
limit the effects on growth, which can alter the dominance 
of pruned trees in the stand [93, 94]. In some cases, tree 

pruning residues are considered as a useful feedstock for 
bioenergy, which can help mitigate dependence on fossil 
fuels [97, 98].

Since pruning artificially increases crown base height, 
it is generally assumed that wood within the pruned area 
will reach mature characteristics earlier than in unpruned 
trees [11, 32, 64]. This implies that microfibril angle (MFA) 
would decrease while fibre length and wood density would 
slightly increase after pruning [64]. However, recent studies 
from Chiu et al. [77] in Taiwania (Taiwania Cryptomerioides 
Hay) and in Douglas-fir (Pseudotsuga menziesii (Mirb.) 
Franco) [28, 99] did not find any effects of pruning on MFA, 
tracheid length, or wood density. In addition, some authors 
have suggested that heartwood formation can be regulated 
by pruning [100, 101], although others disagree with this 
finding [102].

Pruning is often done in combination with thinning [71, 
77, 89, 96] or fertilising treatments [95, 103]. Pruning can 
help limit the increase in stem taper generally caused by 
thinning [93], although whether this effect can be observed 
depends on stand density and age [94]. Pruning can also be 
applied to dead branches. Unlike pruning of live branches, 
pruning dead branches does not disrupt tree growth [94]. Its 
only effect would be to reduce the occurrence of loose knots.

Fertilisation

Fertilisation is often portrayed as a temporary increase in 
site fertility [104]. It can be used to help seedling establish-
ment, especially on nutrient-poor sites. It can also acceler-
ate growth and help tree development during the period of 
rapid juvenile growth (when nutrient demand is high), albeit 
to the detriment of wood quality. In the USA, mid-rotation 
fertilisation is a proven method for improving tree growth 
by counteracting nutrient limitations [12, 105]. Even late-
rotation fertilisation 5 to 10 years before harvesting has been 
practiced to improve tree growth of Douglas fir in Canada 
[106]. The area of forest treated with fertilisation has thus 
increased substantially in recent years [105]. Most often, 
the applied macronutrients are nitrogen, phosphorus and 
potassium (NPK). Their effects on wood quality depend 

Table 1   (continued)

Figure Reference Species Age Supplementary information

[45] (JW) White spruce 38 Data extracted from Table 1, p. 16. Earlywood splint mac-
erated by Franklin’s method. Juvenile wood

[45] (MW) White spruce 38 Data extracted from Table 2, p. 17. Earlywood splint mac-
erated by Franklin’s method. Mature wood

[44] (JW) Black spruce 38 Data extracted from Table 1, p. 1000. Earlywood splint 
macerated by Franklin’s method. Juvenile wood

[44] (MW) Black spruce 38 Data extracted from Table 1, p. 1000. Earlywood splint 
macerated by Franklin’s method. Mature wood
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on several factors, including the combination of nutrients 
applied, their concentration, the preexisting site conditions 
[107] and the species being treated [108].

Most studies measuring the effects of fertilisation treat-
ments on wood properties have focused on wood density, 
with variable responses reported (Table 3). Some studies 
indicated a reduction in wood density in conifers after fer-
tilisation [105, 106, 109–111], while others found either no 
decrease in density or only a slight decrease [74, 112, 113]. 
The effect on wood density also tends to last for a limited 
period of time, i.e. around 5 years following treatment (e.g. 
[109, 111]). Generally, the reduction in wood density is more 
pronounced when fertilisation is applied at higher concentra-
tions. For example, Antony et al. [105] showed a reduction 
in wood density of about 40 kg m−3 in a thinned loblolly pine 
(Pinus taeda L.) plantation after a mid-rotation application 
of heavy nitrogen fertiliser treatment (336 kg ha−1), com-
pared with the unfertilised control. The response of wood 
density to fertilisation treatments may also depend on the 
additional effects of stand density management operations.

Often, fertilisation is applied in combination with thin-
ning treatments. For example, a recent study by Kantavichai 
et al. [114] reported that the decline in wood density fol-
lowing fertilisation was dependent on both initial stocking 
and the intensity of pre-commercial thinning treatments in 
Douglas-fir plantations in the US Pacific Northwest. Accord-
ing to their study, trees that produced the highest density 
and stiffest wood, came from stands that had been pre-com-
mercially thinned to half their original stem density without 
further thinning and fertilisation treatments. Usually, when 
fertilisation and thinning are combined, the radial growth 
response is greater than when only fertilisation treatments 
are applied [112, 113].

Aside from wood density, few studies have examined 
the effects of fertilisation on other wood properties. As 
for wood density, the effects on wood fibre characteristics 
seem to be more pronounced when heavy fertilisation treat-
ments are applied. For example, Antony et al. [105] found a 
significant decrease in cell wall thickness and a significant 
increase in tracheid radial diameter under a heavy fertilisa-
tion treatment (336 kg ha−1 of N). At lower concentrations 
(e.g. 112 kg ha−1 or 224 kg ha−1 of N), the effects on wood 
fibre characteristics were either not significant or negligible. 
Mäkinen and Hynyen [112] found only small differences 
between the fertilisation treatments (control vs fertilised 
with 150 kg N + 75 kg P2O5 + 75 kg K2O ha−1) in the ear-
lywood: latewood ratio (3–9%), tracheid diameter (2–5%), 
tracheid length (4–5%) and cell wall thickness (0–10%) in 
Scots pine. Small increases in MFA after fertilisation have 
been reported, which led to a slight decrease in stiffness in 
loblolly pine and radiata pine [105, 110]. To reduce the neg-
ative impacts of fertilisation on wood mechanical properties, 
Downes et al. [110] suggested applying mild fertilisation 

treatments more frequently. In terms of chemical properties, 
nitrogen fertilisation has been reported to increase lignin 
and extractive concentrations [107, 115], which could affect 
pulp bleaching processes in pulp and paper manufacturing.

Site

Silviculturists usually quantify site productivity using site 
index, which is typically defined as the average height of 
the dominant trees in even-aged stands at a given index 
age [116]. Higher values are therefore associated with 
higher overall site productivity. Since site conditions 
influences tree growth, it is generally assumed that wood 
properties will be affected too [24]. Studies looking at the 
link between site index and wood properties often show a 
decrease in wood properties with an increase in site index. 
For example, Antony et al. [117] observed that both MOE 
and MOR values decrease in loblolly pine with an increase 
in site index. Their observations were consistent with ear-
lier ones made by Brazier and Mobbs [60] in Sitka spruce. 
Watson and Bradley [118] also reported a decrease in wood 
density with an increase in site index in several commer-
cial conifer species, while fibre length showed the opposite 
trend.

Silviculturists can also use the concept of site quality to 
characterise a site. In this case, site quality is assessed using 
physical and biological variables—such as water and nutri-
ent availability, temperature and precipitation, latitude or 
soil type—or using a classification system that stratifies the 
landscape into ecologically meaningful units [116]. Gen-
erally, most studies on the effects of site quality on wood 
properties have focused on wood density; however, recent 
efforts have been made to predict site level or regional vari-
ation in MOE and MOR for some coniferous species (e.g. 
[117, 119]). For example, it has been reported that the MOE 
and MOR values of loblolly pine and radiata pine increased 
on warmer sites [117, 119]. It is believed that air temperature 
measured in the autumn is the most important and consistent 
variable influencing MOE values as it influences the pro-
duction of latewood [120]. As such, sites benefiting from 
an extending growing season were also found to result in 
lower MFA [121].

Temperature, rainfall and site fertility have also been rec-
ognised as environmental drivers of wood density (e.g. [122]). 
For example, in radiata pine growing in New Zealand, higher 
wood density was observed in warmer sites at lower elevations 
[122]. Moore et al. and Rossi et al. [65, 123] also demonstrated 
that wood density decreased with increasing elevation and 
latitude in Sitka spruce and black spruce, respectively, while 
Giroud et al. [124] showed no effect of a latitudinal gradient 
on wood density in black spruce, jack pine and balsam fir. In 
black spruce, wood density was also found to be higher on 
either very dry (e.g. [125]) or wet sites (e.g. [126]).
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Our review of literature has shown that studies based on site 
index tend to report contrasting results to those including site 
quality and climatic variables. It is thus difficult to summarise 
the effect of site productivity or site quality on wood properties. 
To better understand the variation in wood properties along a 
gradient of site conditions or site productivity, many different 
variables or combinations of variables should be considered 
and tested. Often, the influence of site productivity is studied in 
combination with climatic conditions and genetic factors (e.g. 
[127]). To meet the challenge of adapting forest management 
practices to climate change impacts, it will also be important 
for future studies to disentangle the effects of site from those of 
genotype on key determinants of wood quality [125].

Genetics

Genetic improvement of forest trees, or tree breeding pro-
grams, have long been considered important for increasing 
growth rates and wood quality with respect to certain traits 
of interest, such as wood density. However, as plantation 
rotations were reduced over time, foresters and tree breed-
ers realised that fast-grown trees contained a large propor-
tion of corewood with unfavourable wood properties. This 
motivated forest geneticists to include more wood quality 
traits in tree improvement programs [128–131]. Traits such 
as wood density, microfibril angle, fibre properties, stiff-
ness and dimensional stability are now commonly included 
in tree breeding programs. Among the traits tested, wood 
density, acoustic velocity (used to estimate wood stiff-
ness), and microfibril angle appear to be the most heritable 
(Table 4). High narrow-sense heritability (i.e. the propor-
tion of phenotypic variance due to additive genetic vari-
ation) values and their low standard errors suggest high 
genetic control for these traits [129]. However, estimates of 
individual narrow-sense heritability often vary with cam-
bial age (i.e. the number of annual growth rings from the 
pith) and among species, which complicates the task of 
genetic selection [132–134].

Depending on the wood quality traits evaluated, 
heritability was found to increase with cambial age 
[133–135], while in some cases, it reached maximum 
values at a specific cambial age [133, 136]. In addi-
tion, some traits of interest, such as wood stiffness, are 
highly correlated with other traits like microfibril angle 
and wood density, which themselves are not always well 
correlated (Table 5). Correlations between wood quality 
traits may also be complicated by environmental factors 
(genotype-by-environment interactions) [136–138]. To 
better control the often negative correlations between 
tree growth and wood quality characteristics, tree breed-
ers stress the need for improving their understanding of 
the molecular genetics of wood traits [8, 139].

Current Knowledge Gaps and Future 
Challenges

Over the past 40 years, the Earth’s temperature has risen by 
0.18 °C per decade [140], which has resulted in an average 
increase in tree growing seasons of approximately 3.6 days 
per decade in Europe [141]. There are geographical vari-
ations in such effects, and in some regions, an extended 
growing season has already caused measurable phenologi-
cal changes in trees [142–145], which could lead to changes 
in wood properties. Despite recent efforts, few studies have 
conducted in-depth investigations of the effects of climate 
warming on wood properties. According to a review on the 
wood anatomy of boreal species under a changing climate 
by Zhang et al. [26], the proportion of latewood in conifer-
ous species appears to be negatively correlated with cli-
mate warming, while the proportion of earlywood and fibre 
length would likely increase with warming temperatures.

It is anticipated that water availability will be the most 
important limiting factor to tree growth in the twenty-first 
century, thus exceeding temperature across large portions 
of the boreal zone [146•]. In areas, where acute drought 
stress is expected to increase, such as in Central Europe 
and western North America, changes in wood cell forma-
tion might be more pronounced [62, 147]. This may affect 
conifers, as tracheid length is largely driven by the water 
availability during cell formation [148, 149]. For example, 
Jyske et al. [69] observed an increase in the cell wall thick-
ness of both earlywood and latewood tracheids of Norway 
spruce following induced drought. Despite MFA being 
considered to be under strong genetic control, a decrease 
in MFA has been observed under drought conditions [26]. 
Earlywood cell adaptations are believed to support hydrau-
lic functional responses to climate, while latewood cells 
are believed to support mechanical functional responses 
to climate [150].

Drought-induced changes such as thicker cell walls and 
lower MFA may prove beneficial in terms of wood mechani-
cal properties. However, drought can also cause significant 
reductions in annual radial growth and height increment 
[147], as well as drastically increasing the risk of tree mor-
tality [151]. Such effects could largely overcome potential 
benefits in terms of wood properties. In comparison to 
broadleaved species, conifers have the tendency to main-
tain larger margins of safety from hydraulic failure, which 
may favour their chances of survival during drought periods 
[152]. However, this margin of safety varies between species 
according to their water potential regulation strategies (i.e. 
isohydric vs anisohydric) [151].

With the observed and predicted increases in global tem-
peratures and changes in precipitation and radiation budgets, 
forests will also become more susceptible to a wider range 
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of natural disturbances. While many uncertainties remain 
regarding changes in disturbance dynamics under climate 
change [153–155], warmer and drier conditions are expected 
to increase the frequency and severity of wildfire, drought 
and insect disturbances, while warmer and wetter conditions 
are likely to increase disturbances arising from wind and 
pathogens [154].

It remains uncertain how forest management practices 
should be adapted in response to climate change and new 
forest disturbance regimes [156]. Intensive forest manage-
ment scenarios with short rotation lengths may bear the key 
advantage of reducing exposure time, thereby increasing the 
likelihood of a given crop reaching the final harvest prior to 
being disturbed. From a wood supply perspective, shorter 
rotations can confer an additional advantage of reduced 
risk of loss from catastrophic disturbances because younger 
stands tend to be less vulnerable to various hazards such as 
wind damage (e.g. [157]), insect attacks (e.g. [158]), drought 
stress (e.g. [159]) and, to some extent, wildfire (e.g. [160]). 
Following drought events, Bennett et al. [159] found that 
larger trees tend to suffer from higher mortality rates, which 
also suggests that shorter rotations can lead to a reduced 
risk. However, Büntgen et al. [161] reported that fast-grown 
trees may be more vulnerable to biotic stressors.

To reduce risk at the landscape level, one suggestion is 
to reduce stand density through more intensive thinning to 
limit growth restrictions caused by drought (e.g. [62]) or 
to increase resistance to insect attacks (e.g. [162–164]). In 
their systematic review of the effects of thinning, Moreau 
et al. [165•] revealed a generally positive influence of 
thinning on forest resistance and resilience to stressors 
such as fire, drought, insects and pathogens. However, 
multiple factors may influence these processes, and the 
review, as well as other studies [157, 166], also high-
lighted a tendency for windthrow resistance to decrease 
temporarily after thinning.

Despite uncertainties about future wind regimes, 
increases in wind exposure may also alter wood cell develop-
ment. Under high wind exposure, conifers are more likely to 
develop compression wood [167], which is characterised by 
higher wood density, higher microfibril angle, shorter fibre 
or tracheid length, higher proportion of lignin, and thicker 
cell walls [22] than normal mature wood. The high exposure 
time needed to induce a compression wood response [167] 
suggests a significant increase in sustained wind speeds 
would be required to directly affect wood quality. However, 
if the occurrence of extreme wind events causes root systems 
to tilt rather than fully overturning (e.g. [168]), this will 
inevitably lead to the production of compression wood in 
conifers. This is a concern because the presence of this type 
of wood in solid wood products can lead to sudden failure 
under load stresses [34, 53, 169].

Genetic improvement programs have started to investigate 
the impact of different biotic and abiotic agents on wood 
quality traits, but several questions remain. For example, 
Nabais et al. [125] recently questioned the assumed link 
between wood density and drought tolerance and highlighted 
that, for some species, other variables, such as tree competi-
tion, soil fertility or resistance to pathogens, are important 
drivers of wood density variation that may undermine the 
assumed density-drought relationship. Therefore, they sug-
gested that selection for drought tolerance should not sys-
tematically be based on wood density as a proxy. Other stud-
ies testing the relationships between tree resistance to insects 
and diseases on the one hand, and tree growth or wood qual-
ity traits on the other, are providing new knowledge that 
could guide tree improvement strategies. For example, Lenz 
et al. [170] recently showed that weevil resistance in Nor-
way spruce is genetically positively correlated with other 
traits such as tree height, height-to-diameter ratio, and wood 
acoustic velocity. It is still unclear, however, how these rela-
tionships will vary among species and which wood quality 
traits might serve as reliable proxies of tree resistance to 
insects and diseases [171]. An important challenge to this 
work is the time required to confirm the efficacy and dura-
bility of the resistance of various genotypes to diseases or 
insects in different environments. A proposed way to over-
come this challenge is to combine breeding with genetic 
engineering [172].

In summary, a key challenge of future wood quality 
research will be to predict the impact of intensive manage-
ment practices under changing climatic conditions and a 
higher frequency and intensity of disturbances from biotic 
or abiotic stressors. Recent literature provides clear evidence 
that trees adapt their wood cell development in response 
to variations in temperature, water availability and CO2 
atmospheric concentration. However, linking environmen-
tal conditions to wood properties remains an emerging field 
of research. Further studies will be required before we can 
fully predict the effects of climate change—and its interac-
tions with silvicultural treatments—on future wood quality 
attributes. An important limitation of the empirical approach 
generally used in wood quality studies is that the applicabil-
ity of results is generally restricted to the range of tested 
conditions. It is practically impossible to test each potential 
combination of species, site, genetic material, silvicultural 
scenarios, and climatic conditions under which trees are 
managed. Also, the need to sample mature stands to evalu-
ate the full impacts of silvicultural decisions implies that 
timely questions can only be answered several decades later 
(at least in temperate and boreal forests). In the meantime, 
the genetic material, silvicultural approach, species of inter-
est, and even the wood properties of interest will have likely 
changed.
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The Need for a Modelling Framework

Wood quality models can be used to anticipate wood proper-
ties in various conditions that may not have been empirically 
tested. A review by Drew et al. [173••] summarised recent 
progress in wood quality modelling and proposed a sim-
ple classification in two general groups, i.e. fully empirical 
and process-based. Here, we focus on the former and high-
light how empirical knowledge such as that included in this 
review can be assembled into a statistical modelling frame-
work that facilitates the extrapolation of results to untested 
conditions. This approach is based on the work of Larson 
[23], who proposed that the distinctive radial patterns of 
wood physico-mechanical properties were largely the result 
of crown processes, such that the type of xylem formed 
depends on both the proximity to the live crown and the age 
of the cambial initials, due to the differential distribution 
of growth regulators (i.e. auxin gradient) along the stem. 
Further understanding of the process of xylem formation in 
trees and of developmental constraints on cambial matura-
tion led to the formulation of competing, but overlapping, 
hypotheses that the distinctive radial patterns of wood prop-
erties is driven by the need for optimising both mechanical 
stability and hydraulic efficiency in tree stems [174]. These 
concepts led to the development of a stem quality modelling 
approach whereby the systematic within-stem variation in 
wood properties is described as functions of cambial age, 
height in the stem and annual ring width, the latter being 
used as a proxy for crown vigour [175–179]. This modelling 
strategy allowed early assessments and comparisons of the 
impacts of any silvicultural scenarios on wood properties 
provided that their effects on tree growth could be simulated, 
i.e. predictions from growth models were used as input to 
the wood properties models [180].

Because this statistical modelling approach has the capac-
ity to address the effects of multiple, potentially confounding 
factors [181], it has been widely used to detect and quantify 
the impact of drivers of wood properties variation, includ-
ing site characteristics [126], silviculture [182] and genetics 
[183]. However, the use of annual ring width (or ring area) 
as a proxy for the effects of environmental conditions has 
important limitations, as both silvicultural treatments [47, 
182] and climatic conditions [184, 185] have been shown to 
influence wood properties beyond the effects that could be 
anticipated from their effects on tree growth.

To improve model predictions, climatic variables are 
increasingly included as predictors of wood properties vari-
ation in such models (e.g. [70, 186–188]). One approach is 
to develop correlations or response functions between sea-
sonal or monthly climatic variables on the one hand, and 
annual ring-level wood properties on the other [186], but 
this may hinder the possibility of detecting the effects of 

acute climatic events such as frost and droughts that can 
alter wood properties [189, 190]. Dendroclimatological 
approaches have been developed to quantify the effects of 
acute climatic events on tree growth [191, 192], which could 
be applied to studies of wood properties. Babst et al. [193] 
provide a comprehensive synthesis of models developed to 
simulate radial growth as a function to climatic variables 
from dendrochronological measurements. Models driven 
by temperature, water balance and day length could offer a 
promising approach for simulating wood properties, which 
could be used in the described framework.

Key to informing silvicultural decision-making is the 
integration of wood properties models into growth model-
ling platforms. Ideally, these platforms should include risk 
assessment modules and allow simulations of changes in for-
est disturbance regimes under different climate projections 
[2, 25, 194, 195]. Not only should platforms be user-friendly, 
but they should also follow the free and open source (FOSS) 
philosophy, so that the information is widely accessible, and 
the workflow is transparent and fully reproducible. CAPSIS 
is one notable example of such a platform that has been used 
extensively and has fostered international collaborations 
[196]. In addition to informing silvicultural decision-mak-
ing before empirical tests can yield results, the developed 
platforms provide an identifiable locus for the integration of 
the most up-to-date knowledge on the links between growth 
conditions and wood properties. Such integration is key to 
meeting the challenges associated with ensuring that both 
wood supply and wood quality from intensively managed 
forests continues to meet demands associated with new prod-
uct development.

Emerging Technologies in Wood 
Characterisation and Utilisation

New technologies offer fresh opportunities for fast and 
efficient characterisation of wood properties. For exam-
ple, recent efforts have led to new algorithms or models 
for assessment of wood density and mechanical properties 
through high-resolution scanning technologies such as com-
puted tomography (CT) (e.g. [197, 198], micro-CT [199], 
and other methods using a combination of X-ray densitom-
etry and ultrasonic measurements [200]. As they offer the 
possibility to characterise wood properties rapidly and at a 
fine scale, such technologies will facilitate greater knowl-
edge acquisition on the effects of intensive forest manage-
ment practices on wood quality.

A concomitant challenge is the need to expand wood 
properties assessments to scales that are relevant to the 
strategic decisions that must be made in forest manage-
ment. Airborne laser scanning (ALS) data has been used 
to link statistical descriptors of forest inventory metrics 
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to wood properties measured on sample plots, to produce 
wall-to-wall, landscape-level assessments of wood proper-
ties [201–203]. As they have yet to include explicit links 
between ALS metrics, stand structure and wood properties, 
such models require local parameterisation and validation. 
The fusion of terrestrial laser scanning (TLS) and ALS data 
may help include such explicit links between canopy struc-
ture, tree crown characteristics and wood properties, and 
thus improve model precision transferability across multiple 
scales [204]. Further development could include the use of 
spectral information from satellite imagery, which can com-
plement the characterisation of forest structure given by ALS 
data by providing longitudinal estimates of photosynthetic 
activity or vegetation stress [205, 206].

At the other end of the forest value chain, it will also 
be crucial to work closely with the engineered wood prod-
ucts industry to understand which wood quality traits most 
closely determine the suitability of wood for use in specific 
products [129, 207]. The detrimental effects of intensive 
forest management practices on wood traits may be at least 
partially offset by innovations in wood processing technol-
ogy. For example, corewood of fast-grown conifers can be 
used for the central portion of laminated beams or its fibre 
added to concrete or plastic composites [2]. Other examples 
include the production of oriented strand board (OSB), par-
ticleboard, and medium density fibreboard [208••]. Moore 
and Cown [208••] argued that corewood panels would have 
similar mechanical properties and internal bond strength to 
those from outerwood panels, although their dimensional 
stability could be compromised. Different processing options 
should be explored to develop wood products that provide 
the best possible alignment between market demand and the 
properties of the resource [209].

Conclusion

All things considered, the most important effects of intensive 
silvicultural practices on wood properties are related to the 
trend of decreasing age at harvest (i.e. rotation age) [25, 32, 
34, 174, 208••, 210]. With advances in genetic improvement, 
trees can more rapidly reach a merchantable size, which leads 
to shorter rotations. This, in turn, leads to higher proportions 
of corewood, which is characterised by lower mechanical 
properties, poorer dimensional stability and overall lower 
quality of lumber for most end-uses [33, 34].

As highlighted in this review, cambial age is a prime 
determinant of the within-stem variation in wood proper-
ties [174]. Many physico-mechanical properties, such as 
wood density, and strength and stiffness, are low near the 
pith, increase rapidly in the first few growth rings of the 
juvenile wood period and then attain more stable values at 
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higher cambial ages [175–177, 211]. Some properties, such 
as longitudinal shrinkage and microfibril angle (MFA), fol-
low a decreasing trend with cambial age [211–213], and in 
these cases, lower values are generally more desirable. Some 
coniferous species have high density near the pith, but this is 
generally associated with a high microfibril angle, and thus 
has properties analogous to that of compression wood (also 
referred to as ‘flexure’ wood) [22, 214].

Overall, the increasing demand for wood fibre combined 
with the needs to manage the risk of disturbance and pro-
tect natural forest ecosystems will imply that an increasing 
proportion of timber will come from intensively managed 
plantations at the global scale. Our review has highlighted 
that genetic selection can help mitigate the impact of a shift 
towards intensive forest management on future wood quality. 
However, the importance of cambial age as a driver of the 
variation of wood properties implies that for most species, 
sites, genetic material and end-uses, shorter rotations will 
come at the expense of overall wood quality.

In intensive silvicultural scenarios, the magnitude of this 
detrimental effect will obviously depend on the chosen rota-
tion length, among other factors; however, it will also depend 
on the distribution of annual rings within the stem, which 
can be modified by the application of thinning, fertilising or 
pruning treatments. Delayed thinning, pruning and delayed 
harvesting can all help increase the proportion of mature wood 
in timber. Precise recommendations of silvicultural scenarios 
that can strike a balance between the needs to produce timber 
rapidly and maintain adequate wood properties will need to be 
devised for each species, genetic material and site of interest. 
Key to achieving this is the development of wood properties 
models and their integration into growth modelling simula-
tors. Such simulation platforms exist but are only available for 
a limited number of species and sites. Although they offer an 
ideal framework to consider the effects of future climate on 
wood properties, this knowledge has rarely been included in 
wood quality simulators.

As several jurisdictions make the transition from vis-
ual grading of solid wood products to non-destructive 
mechanical grading [215], there is a growing concern that 
the lumber produced from intensively managed stands may 
not always meet the requirements and the grading speci-
fications of the end-users. As highlighted in this review, 
the wood processing industry can adapt to some extent 
to the supply of wood of lesser quality, but some thresh-
olds should not be exceeded. The minimum requirement 
of the C16 mechanical grade for timber frame construc-
tion in Europe provides an example of such threshold [65, 
216]. A better understanding of the links between silvi-
cultural practices, visual grading, wood properties, and 
non-destructive mechanical grading is thus required [2, 
217]. This highlights the importance for silviculturists, 
wood scientists and tree breeders to work collaboratively 

to ensure that future wood quality will not deteriorate 
under rapidly changing conditions. A desired outcome of 
such collaborative efforts is that practitioners are given 
access to the knowledge and material that will allow them 
to select species and provenances with the best resistance 
and resilience to stressors without sacrificing either wood 
volume or quality.
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