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A B S T R A C T

Total soil CO2 efflux (FCO2) is the second most important carbon flux after photosynthesis in boreal forests. 
However, accurate modelling of FCO2 remains challenging because of its high variability, both temporally and 
spatially. Using an Abies balsamea-dominated boreal landscape in Quebec (eastern Canada) as a case study, we 
modelled seasonal, intra-seasonal and spatial variability of FCO2 using climate variables and topographic and 
canopy structure attributes derived from Light Detection and Ranging (LiDAR) and assessed their respective 
contributions to soil CO2 emissions. Weekly point measurements of FCO2 at 99 sites were taken over an area of 
122 ha between June and October 2020. The seasonal component of FCO2 was quantified and subtracted from 
FCO2 measurements to isolate the spatial and intra-seasonal components of the flux. The two components were 
then modelled using a Random Forest Regression model and studied using accumulated local effect plots (ALE 
plots). Our approach explained 81% of the variation in FCO2: the seasonal pattern explained 36% of the variation 
in FCO2 measurements, while spatial and intra-seasonal patterns together explained 45%. The most important 
factors explaining spatial variation were vegetation height and the slope height. Average air temperature of the 
last two days before efflux measurements was the most important factor explaining intra-seasonal variation. The 
proposed methodology makes it possible to predict FCO2 from external factors derived from climate and remote 
sensing data and enables the decomposition of FCO2 into its seasonal, intra-seasonal and spatial components. Our 
results demonstrate the importance of spatial and intra-seasonal variations in FCO2 compared to seasonal vari
ation, a finding that has implications for the measurement and modelling of FCO2 at landscape and global scales.   

1. Introduction

The boreal forest is the largest terrestrial biome on Earth (Pan et al.,
2011); it stores a significant amount of organic carbon, particularly in 
the soil (Bradshaw and Warkentin, 2015). In forest ecosystems, the 
carbon balance depends on carbon uptake via photosynthesis and car
bon release through autotrophic and heterotrophic respiration (Lin
droth et al., 1998; Malhi et al., 1999; Kurz et al., 2013). Soil respiration 
can account for between 48 and 71% of total ecosystem respiration in 
boreal forest stands (Lavigne et al., 1997). While the boreal forest is 
currently considered as a global carbon sink (Pan et al., 2011), it could 
become a carbon source under global warming, as increasing tempera
tures could lead to an increase in soil organic matter decomposition 

through heterotrophic soil respiration (Schindlbacher et al., 2012; Kurz 
et al., 2013; Bond-Lamberty et al., 2018; Tremblay et al., 2018; Marty 
et al., 2019). 

Total soil CO2 efflux (FCO2) represents the amount of CO2 moving 
from the soil to the atmosphere. It depends mainly on biological pro
cesses (i.e., respiration by autotrophic and heterotrophic organisms) 
(Kuzyakov, 2006) and on the physical characteristics of the soil that 
affect CO2 diffusion, such as texture, tortuosity or water content (Currie, 
1961; Kimball, 1983; Moldrup et al., 2001). At the very small scale, FCO2 
depends on soil conditions controlled by environmental and biotic fac
tors (i.e., “internal soil factors”): soil temperature (Lloyd and Taylor, 
1994), soil water content (Orchard and Cook, 1983; Linn and Doran, 
1984), soil organic matter content (Trumbore, 2000), the abundance 
and composition of the soil microbial community (Carney et al., 2007; 
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Allison et al., 2010), and local root activity (the sum of root respiration 
and the amount of root exudates secreted into the soil). 

Other biotic and abiotic factors (i.e., “external soil factors”) linked to 
vegetation, topography and recent weather indirectly affect FCO2 by 
influencing internal factors. Vegetation influences FCO2 through its ef
fect on soil temperature (Song et al., 2013), soil water content (Kergoat, 
1998), quality and quantity of soil organic matter (Raich and Tufek
ciogul, 2000; Trumbore, 2000) and local root activity via root biomass 
(Han et al., 2007; Vargas and Allen, 2008), net and gross primary pro
ductivity (Raich and Schlesinger, 1992; Janssens et al., 2001), leaf area 
index (Reichstein et al., 2003) and photosynthetic activity (Kuzyakov 
and Cheng, 2004; Vargas et al., 2011a). For instance, a dense vegetation 
cover limits the amount of solar energy reaching the ground, impacting 
negatively soil temperature (Oliver et al., 1987), which could negatively 
influence soil respiration. In addition, topography and landscape attri
butes control the movement of water, energy and matter (MacMillan 
et al., 2000; McBratney et al., 2003), which directly affects soil water 
content, temperature and other properties (e.g., nutrient availability, 

texture), and thus, indirectly influences FCO2 (Brubaker et al., 1993; 
Hanson et al., 1993; Abnee et al., 2004; Tamai, 2010). For example, soil 
temperature is higher on sun-exposed slopes, as more energy reaches the 
ground (Prévost and Raymond, 2012), which could positively influence 
FCO2. Finally, recent weather conditions such as air temperature changes 
and precipitations can affect FCO2 through changes in soil temperature 
and soil water content (Granier et al., 2007; Phillips et al., 2010). For 
example, rain can increase biological activity or decrease CO2 diffusion 
in the soil and thus, increase or decrease FCO2 (Orchard and Cook, 1983; 
Linn and Doran, 1984; Skopp et al., 1990). Interactions between internal 
and external factors translate into temporal (i.e., seasonal, 
intra-seasonal and diel) and spatial patterns of FCO2. As internal and 
external factors can both vary temporally and spatially, it can be chal
lenging to isolate the specific contribution of each factor on FCO2 (Var
gas et al., 2011b). 

The availability of high-quality remote sensing data has increased 
the use of external factors (as opposed to internal factors) in soil CO2 
modelling. For example, Jian et al. (2022) used air temperature and 
monthly precipitation to model soil respiration at the site scale instead 
of using soil temperature and soil water content. Warner et al. (2019) 
used LiDAR-derived topographic attributes to model soil CO2 and CH4 
fluxes at the landscape scale and Huang et al. (2015) relied on night-time 
land surface temperature to model annual soil respiration rates at the 
site scale. However, fractioning FCO2 into its different components (i.e., 
spatial and temporal variation patterns) remains challenging; studies 
usually tend to minimize the number of field FCO2 measurements used to 
model the seasonal, intra-seasonal, spatial and diel trends of FCO2 
(Betson et al., 2007; Martin and Bolstad, 2009; Perez-Quezada et al., 
2016). 

Our main objective was to assess the seasonal, intra-seasonal and 
spatial variability of FCO2 using empirical quantitative relationships 
established between FCO2 measurements and spatially referenced envi
ronmental covariates. A 122-hectare balsam fir (Abies balsamea (L.) 
Mill.) – paper birch (Betula papyrifera Marshall) dominated forest 
located in boreal Quebec (Canada) was used as a case study, and we used 
a closed-dynamic-chamber system to measure FCO2 at a weekly interval. 
These relationships were applied to model the spatial and temporal 
variations of FCO2 over the study area. The effects on FCO2 of external 
factors related to recent weather, topography and vegetation were also 
studied. Our methodological approach is based on the decomposition of 
FCO2 into its temporal and spatial variation patterns and the use of a 
machine learning approach that allows to take into account the complex 
interactions between covariates. This approach allowed us to quantify 
the importance and isolate the specific effect of each variable on FCO2, 
and to map the predictions of FCO2 in our study area. We hypothesized 
that seasonal variation in FCO2 does not explain a significant part of the 
local variation in FCO2, while external factors related to recent weather, 
vegetation, soil water content and soil characteristics explain most of the 
spatial and intra-seasonal variations. 

Abbreviations and acronyms 

Ai Median predicted total soil CO2 efflux for the study area 
at day i that reflects the seasonal component of total soil 
CO2 efflux 

ALE Accumulated local effects 
DEM Digital elevation model 
DOY Day of the year 
DSM Digital surface model 
FSOM Soil CO2 efflux from decomposition of soil organic 

matter 
FCO2 Total soil CO2 efflux 
FCO2ij Total soil CO2 efflux at time i and location j 
F̂CO2 Predicted total soil CO2 efflux (Ai + Wi + Sj) 
LiDAR Light Detection and Ranging 
MDI Mean decrease in impurity 
MRVBF Multiresolution index of valley bottom flatness 
Q10 Rate of change of soil respiration for a temperature 

increase of 10 ◦C 
RFij Intra-seasonal and spatial components of total soil CO2 

efflux at time i and location j 
RMSE Root mean square error 
R2 Coefficient of determination 
Sj Spatial component of total soil CO2 efflux at location j 
SOM Soil organic matter 
Wi Component of the total soil CO2 efflux related to recent 

weather of the ith day  

Table 1 
Monthly means of daily mean, minimum and maximum air temperature and monthly total precipitation at Forêt Montmorency in 2020.  

Month Monthly means of daily mean air 
temperature (◦C) 

Monthly means of daily maximum air 
temperature (◦C) 

Monthly means of minimum daily air 
temperature (◦C) 

Monthly total precipitation 
(mm) 

January - 12.4 - 6.5 - 18.2 88.6 
February - 13.5 - 6.7 - 20.2 99.3 
March - 8.5 - 0.9 - 16.0 161.0 
April - 3.3 3.2 - 9.7 106.9 
May 5.3 12.6 - 2.0 85.5 
June 12.7 20.5 5.0 80.0 
July 16.6 23.1 10.2 196.0 
August 13.4 19.9 6.9 156.4 
September 8.5 14.7 2.4 186.3 
October 1.4 6.3 - 3.6 191.2 
November - 2.9 2.4 - 8.2 103.4 
December - 8.0 - 3.2 - 12.9 204.7 

Data from Environment and Climate Change Canada (2021). 
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Fig. 1. Plots location within the “Bassin Expérimental du Ruisseau des Eaux-Volées” at Forêt Montmorency (Québec, Canada). Plots were distributed in forest stands 
that originated from a clearcut in 1993–1994 (shaded area), by considering topographic attributes and vegetation height derived from LiDAR datasets. 
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2. Materials and methods 

2.1. Study area 

The study took place in a sub-watershed of the “Bassin Expérimental 
du Ruisseau des Eaux-Volées” (BEREV-7a, 47◦17′27.1′′ N; 71◦09′55.9′′

W) (Plamondon and Ouellet, 1980), located in Forêt Montmorency, an 
experimental forest managed by Université Laval (Quebec, Canada). 
Forêt Montmorency is part of the perhumid boreal region of eastern 
Canada (Clayden et al., 2011). It has a cold and wet climate with an 
mean annual temperature of 0.5 ◦C and annual precipitation of 1 583 
mm, of which 620 mm falls as snow (1981–2010 mean from weather 
station #7,042,388) (Environment and Climate Change Canada, 2019). 
The climatic data for the site are presented in Table 1. 

The study area (122 ha) (Fig. 1) consists of forest stands that origi
nated from a clearcut with protection of advance regeneration and soils 
performed in 1993–1994 (27 years old in 2020) (Guillemette et al., 
2005); trees were cut and delimbed at the stump, leaving branches and 
tops on the clearcut area. Forest stands in the study area are dominated 
by balsam fir (90% of the basal area). Other species include white spruce 
(Picea glauca (Moench) Voss), black spruce (P. mariana (Mill.) B.S.P.) 
and paper birch. Ground vegetation consists of mosses, including 
Sphagnum sp. in wetter areas. Information on tree height, number of 
stems per hectare and basal area for each plot is presented in the Sup
plementary Material section. The main soil types are ferro-humic and 
humo-ferric podzols (Soil Classification Working Group, 1998) associ
ated with deep deposits of glacial origin dominated by loamy sands and 
sandy loams and a 5–15 cm mor humus on dry mineral soils. Wetter sites 
were characterized by a 5–40 cm organic layer mainly composed of 
Sphagnum sp. Soil organic carbon content in B horizons is relatively low, 
varying between 5 and 79 g/kg with a mean of 30.2 g/kg. 

Within the study area, we distributed 33 plots according to a topo
graphic gradient (mean [5th – 95th quantile]) based on altitude (m) 
(841.23 [798.40 – 890.19]), slope (%) (17 [8 – 24]) and vegetation 
height (m) (5.85 [2.60 – 9.42]) using conditioned Latin hypercube 
sampling; a sampling strategy which produces a sample design that re
spects the variance of covariates in the study area (Minasny and 
McBratney, 2006; Minasny et al., 2013). Each plot (20 m × 20 m) was 
divided into four 10 m × 10 m quadrants, which were further divided 
into four 5 m × 5 m sub-quadrants. Three quadrants were randomly 
selected in each plot; in each one, we randomly selected a sub-quadrant 
for FCO2 measurements using inserted cylinders. The cylinder was placed 
randomly within the sub-quadrant (with, on average, at least 1 metre 
distance from the nearest tree). Cylinders were made of sections of 

opaque white PVC pipes that were 10 cm in length and 10 cm in 
diameter. Cylinders were slightly (0–3 cm) inserted into the forest floor 
and secured to the ground using brackets to limit air exchange between 
the inside and ambient air during FCO2 measurements. 

2.2. Data collection 

Fig. 2 illustrates the main steps relative to data collection, statistical 
analyses and FCO2 modelling. Collected data are grouped into three 
categories: FCO2 measurements, recent weather data, and topographic 
and vegetation data. 

2.2.1. Total soil CO2 efflux measurements 
We measured FCO2 with two LI-8100 portable infrared gas analyzers 

(IRGA) and two survey chambers (8100–102 10 cm) (LI-COR inc., 
Lincoln, Nebraska, USA). Both instruments were calibrated in the spring 
before the first measurements. FCO2 measurements were taken between 
mid-June and late October 2020, which typically corresponds to the 
period when the ground is snow-free at Forêt Montmorency. We per
formed FCO2 measurements on all 99 cylinders on a weekly basis in June, 
July and August, and every two weeks in September and October. Each 
week, FCO2 measurements were performed randomly (i.e., collars were 
measured randomly throughout the day). FCO2 measurements were 
made during the day, between 7:00 a.m. and 4:00 p.m. (with 95% of the 
measurements being taken between 8:00 a.m. and 3:00 p.m.). No FCO2 
measurement was made during precipitation events. The observation 
time for each FCO2 measurement was 90 s with a dead band of 30 s 
following the closure of the survey chamber. Only one measurement 
cycle was performed per cylinder and per date. After each measurement, 
the instrument performed a 60-second post-purge sequence during 
which air was pumped into the system, thus preventing the accumula
tion of moisture in the instrument. 

2.2.2. Recent weather 
We used climate data from the Meteorological Service of Canada 

(Environment and Climate Change Canada, 2021) to assess recent 
weather features, based on a station located 3.5 km from the study area 
(ID 7,042,395; coordinates 47◦19′22.000′′ N; 71◦08′54.000′′ W; altitude 
672.8 m). Three features were calculated to describe the effect of recent 
weather on the intra-seasonal variability on FCO2: the mean air tem
perature during the two days (D-2 and D-1) prior to the day of FCO2 
measurements (D0), the difference between the mean daily air temper
ature of D-1 and the mean daily air temperature of D0, to account for 
short-term variations of air temperature that are not accounted for by 

Fig. 2. Conceptual framework used to assess the seasonal, intra-seasonal and spatial variability of FCO2 in a balsam fir (Abies balsamea (L.) Mill.) – white birch (Betula 
papyrifera Marshall) dominated perhumid boreal watershed in Quebec (Canada). 

A. Harel et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 335 (2023) 109469

5

seasonal trends, and finally, the cumulative precipitation of the last 12 h 
prior to D0 (see Table A1 for details). Several time steps were tested for 
each feature. We selected the 3 time steps that best improved model 
performance and that were described earlier. 

2.2.3. Topography and vegetation 
We used digital surface and elevation models (DSM and DEM) at a 1- 

m resolution that were derived from a 2016 aerial LiDAR survey of the 
study area (2.5 pt/m2). The original DEM was first resampled to 15 m 
and filtered with multiple average filter windows to alleviate the effect 
of local noise in inducing spurious errors in topographical derivatives 
(MacMillan et al., 2000). The following topographic features were 
derived from the DEM using System for Automated Geoscientific Ana
lyses (SAGA, 2.3.2) (Conrad et al., 2015): aspect, catchment area, 
catchment slope, convergence index, convexity, landforms, LS factor, 
mid-slope position, MRVBF, valley depth, slope height, slope length and 
the slope (Table A2). Vegetation height was calculated by subtracting 
the DEM from the DSM (1 to 1.5 m error) (Mielcarek et al., 2018) (see 
Table A2 and the Supplementary Material for details). 

2.2.4. Feature selection 
To reduce multicollinearity and enhance the interpretability of the 

model, we performed a step-by-step covariates (feature) selection using 
the variance inflation factor (VIF) calculated using the Python statsmo
dels (0.12.2) module (Seabold et al., 2010). At each step, we removed the 
feature with the highest VIF value. Then, we recalculated VIF for all 
remaining features. We repeated this operation until all features 
exhibited a VIF value below 10, as values between 5 and 10 are generally 
used to identify features that are moderately correlated with other fea
tures (Craney and Surles, 2002). VIF selection resulted in seven 
LiDAR-derived features for the model: 1) the vegetation height, 2) a 
multiresolution index of valley bottom flatness (MRVBF), 3) a topo
graphical convergence index, 4) the slope height and 5) length, 6) the 
mid-slope position and 7) the aspect. The mean air temperature during 
D-2 and D-1, the difference between the mean daily air temperature of 
D₋1 and D0, and the cumulative precipitation of the last 12 h prior to 
measurements were also selected for modelling (Appendix A). 

2.3. Modelling total soil CO2 effluxes 

Time series of FCO2 can be broken down into three components that 
reflect the effects of variables related to 1) the seasonal trend (Ai), 2) 
daily/weekly patterns (Wi), and 3) spatial patterns (Sj) (Eq. (1)) 
(Appendix B). 

FCO2ij = Ai + Wi + Sj + Eij (1)  

Where FCO2ij is the total soil CO2 efflux at time i and location j, Ai is the 
total mean soil CO2 efflux relative to the seasonal component at time i 
which makes it possible to disentangle the amount of variance that is 
associated with seasonal climatic conditions, Wi is the total soil CO2 
efflux relative to the intra-seasonal component (recent weather condi
tions) at time i, Sj is the total soil CO2 efflux relative to the spatial 
component at location j (spatially explicit biotic and abiotic factors: 
topography, vegetation), and Eij is the remaining components that could 
not be explained by the model at time i and at location j. The proposed 
approach can be considered as a specific case of seasonal trend 
decomposition for multiple time series, in which a spatial component is 
involved. 

2.3.1. Seasonal trend 
We removed outliers in FCO2 measurements on a per-plot basis using 

the moving average window (k = 18 FCO2 measurements, 3 days of 
measurements on both sides) function from caTools R package (1.18.0) 
(Tuszynski, 2020). Outliers were removed when they were outside the 
mean±2 standard deviations’ interval (which represented about 0.7% of 

the measurements). We then used filtered values to simulate Ai for the 
entire study area using a double logistic function, which uses the day of 
the year (DOY) as input (Eq. (2)): 

Ai = min + (max − min)

×

(
1

1 + exp( − mS × (i − S))
+

1
1 + exp (mA × (i − A))

− 1
)

(2)  

Where Ai is the total soil CO2 efflux (µmol CO2 m− 2 s− 1) related to the 
seasonal component for a specific DOY (i), min is the minimum pre
dicted total soil CO2 efflux, max is the maximum measured total soil CO2 
efflux in the dataset, S and A are times of inflection (DOY) during the 
early and late summer periods, respectively, and mS and mA are the 
rates of change at S and A, respectively. 

We optimized the parameters of the double logistic curves with the 
Levenberg-Marquardt Nonlinear Least-Squares algorithm (Levenberg, 
1944; Marquardt, 1963) using the minpack.lm R package (1.2.1) (Elzhov 
et al., 2016). The uncertainty in the parameter estimates was assessed 
using a bootstrap resampling approach (B = 1000). Mean and standard 
deviations of each parameter were retained to describe the seasonal 
dynamics of FCO2; we further retained median values of all daily simu
lated effluxes to assess the seasonal trend (Ai). 

2.3.2. Intra-seasonal and spatial components 
We assessed the intra-seasonal and spatial component (RFij), which 

contains Wi and Sj, by subtracting Ai from FCO2ij using Eq. (3): 

RFij = FCO2ij − Ai = Wi + Sj + Eij (3)  

Where RFij is the calculated spatial and intra-seasonal component, FCO2ij 
is the measured total soil CO2 efflux at time i and location j, Ai is the total 
mean soil CO2 efflux relative to the seasonal component at time i, Wi is 
the total soil CO2 efflux relative to the intra-seasonal component at time 
i, Sj is the total soil CO2 efflux relative to the spatial component at 
location j, and Eij is the remaining components that could not be 
explained by the model at time i and at location j. All terms in Eq. (3) are 
in µmol CO2 m− 2 s− 1. 

Wi and Sj were estimated using a Random Forest Regression model 
(Breiman, 2001) implemented in the Python scikit-learn library (0.24.1) 
(Pedregosa et al., 2011). This non-parametric approach is relatively 
robust to multicollinearity and allows the integration of categorical and 
numerical features, and the identification of features that contribute to 
the model’s accuracy (Hastie et al., 2009). 

Six hyperparameters were optimized to improve the accuracy of the 
Random Forest Regression model (Appendix C). We performed the opti
mization using a grid search algorithm based on the performance of the 
algorithm in cross-validation (Hastie et al., 2009). We first divided the 
complete dataset (n = 1331) in two sub-datasets: one for training (70% 
of the dataset) and one for testing (out-of-bag observations) (30% of the 
dataset) based on cylinder ID, i.e., observations from a given cylinder 
were either all used for training or all used for testing; they were never 
split between the datasets. This allows to alleviate potential overfitting 
during the training stage. We further divided the training dataset into 
two sub-datasets: calibration (70% of the training dataset) and valida
tion (30% of the training dataset), once again considering cylinder ID as 
a grouping factor for distributing observations between datasets. We 
used the validation dataset for hyperparameter optimization and for 
assessing the expected error; the test dataset was used to assess the 
generalization error. During the hyperparameter optimization stage, the 
best of 500 random hyperparameter combinations (out of 11 000 com
binations) was tested with a k-fold cross-validation (n = 5). The top-5 of 
all combinations of hyperparameters were retained based on R2 values 
(validation dataset). This operation led to a total of 125 models resulting 
from the combinations of 5 sets of hyperparameters, 5 training datasets 
and 5 test datasets. These combinations made it possible to study the 
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Fig. 3. Seasonal variations of daily mean (dots) and min/max (vertical bars) air temperature (A), total daily precipitation (B), total soil CO2 efflux (FCO2) mea
surements (dots) and median prediction of the seasonal trend (line) (Ai) with the related uncertainty (error bars) resulting from a bootstrap resampling approach (B 
= 1000) (for each day, 90% of the 1000 predictions of daily median FCO2 are within the error bar) (C) for the study area between June and October 2020. 
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effect of sampling (training and testing datasets) and hyperparameter 
combinations on model performance. We used two indicators to eval
uate the performance of the model: the coefficient of determination (R2) 
was used as an indicator of the standardized variance that exists between 
measured and simulated values, and the root mean squared error 
(RMSE) was used to quantify the magnitude of the errors. 

2.3.3. Mapping total soil CO2 effluxes 
We mapped predicted total soil CO2 efflux (F̂CO2) daily at a 10 m 

spatial resolution by combining the seasonal trend (Ai) with the intra- 
seasonal (Wi) and spatial (Sj) components (Eq. (4)). We divided the 

study area into 10 m × 10 m cells for which we derived topographical 
attributes and vegetation height. We then calculated the three recent 
weather features for each day between 1 June and 31 October 2020. For 
each pixel, Wi + Sj were assessed using the median value from the 125 
models. We also calculated the uncertainty associated with the predic
tion of Wi + Sj by subtracting, for each pixel, the 5th percentile value 
from the 95th percentile value of the 125 models’ predictions. 

F̂CO2 = Ai + Wi + Sj (4)  

Table 2 
Parameters of the double logistic function used to characterize the seasonal trend (Ai) in total soil CO2 efflux (FCO2), with and without bootstrap (mean [5th percentile – 
95th percentile]).  

data n min max S mS A mA 

all dataset 1 431 1.04 15.88 180 0.05 238 0.04 
with bootstrap 1 431 1.04 

[1.04 – 1.4] 
15.86 
[15.85 – 15.88] 

181 
[178 – 183] 

0.05 
[0.05 – 0.06] 

239 
[235 – 241] 

0.04 
[0.03 – 0.04] 

Note: All total soil CO2 efflux (FCO2) measurements were used in “all dataset”. “with bootstrap” refers to the bootstrap resampling approach used to quantify the 
uncertainty related to the time interval between the FCO2 measurements. n is the number of FCO2 measurements used to estimate the parameters: min and max are the 
minimum predicted and the maximum measured values of FCO2, respectively, S and A are times of inflection points on the double logistic curve (DOY), and mS and mA 
are the rates of change at times S and A, respectively. 

Fig. 4. Predictive performance of the 
125 models grouped by the 5 best 
combinations of hyperparameters tested 
(boxplots) and the 5 test datasets 
(colour of the dots). Each boxplot thus 
represents 25 models. R2 (test) (Y-axis) 
is the R2 values on the test dataset. The 
combinations of hyperparameters used 
to fit these models are presented in 
Appendix C. For the boxplots, 50% of 
the values fall within the box (inter
quartile range (IQR), 25th – 75th quan
tile) with the thick horizontal line 
representing the median. The vertical 
line (on each edge of the box) represents 
the range of values that fall in the in

terval between − 1.5 times the 25th quantile (q25) and the 25th quantile (q25 – 1.5 IQR) or in the interval between the 75th quantile (q75) and 1.5 times the 75th 

quantile (q75 + 1.5 IQR). Black dots represent the outliers (> 1.5 times and <3 times the interquartile range, in either direction from the box). coloured dots are used 
to identify each sub-dataset used in test.   

Fig. 5. Proportion of the variation (R2 and RMSE) in total soil CO2 efflux (FCO2) measurements explained by the seasonal component of FCO2 (Ai) (A), proportion of 
the variation in calculated Wi + Sj explained by the predicted Wi + Sj (B), proportion of the variation in FCO2 explained by the predicted total soil CO2 efflux (F̂CO2 ) 
(C). For B and C, all 125 test datasets were used (n = 49 950). The dotted line represents the 1:1 line. 
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2.4. External factors and total soil CO2 effluxes 

We evaluated the importance of each variable from the Random 
Forest Regression models using the impurity-based feature importance 
(mean decrease in impurity, MDI) in scikit-learn library (Pedregosa et al., 
2011). MDI varies between 0 and 1, with values closer to 1 associated 
with more important features in the model. 

We produced main effect accumulated local effects plots (ALE plots) 
to isolate the individual effect of each variable on the prediction of the 

intra-seasonal and spatial components. ALE plots describe how variables 
influence the mean prediction of a machine learning model while 
keeping others fixed, even if the predictors are correlated (Molnar, 2019; 
Apley and Zhu, 2020). This is achieved by plotting, for each input var
iable, the differences in model predictions as a function of intervals 
(called “bins”) of input variable values. The use of differences avoids 
making mean predictions from artificial variable values that are unlikely 
to be observed, especially when variables are correlated (Molnar, 2019). 
We produced ALE plots with the alepython module (0.1) (Jumelle et al., 

Fig. 6. Median prediction of total soil CO2 effluxes (F̂CO2) (daytime) for randomly selected days of June (A), July (B), August (C), September (D) and October (E) and 
corresponding inter-quantile ranges associated with the predictions (F-J) (calculated by subtracting the 5th percentile from the 95th percentile) for the study area. 
Recent weather features values used for the prediction of Wi + Sj are presented as Supplementary Material. 

Fig. 7. Proportion (%) of occurrence of each variable by order of importance for the 125 models. The X-axis represents the position of importance of each variable 
according to the mean decrease in impurity (MDI). The variables in position 1 are the most important and those in position 10 are the least important. Each bar 
represents the proportion of variable that occurs in that position. MRVBF: Multiresolution Valley Bottom Flatness Index. 
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2020) using the model whose R2 on the test dataset was equal to the 
median of the R2 values of the 125 models. 

We performed all modelling and statistical analyses in R (4.0.3) (R 
Core Team, 2020) and Python (3.7.10) (Python Core Team, 2015) pro
gramming languages. Graphs and maps were produced using the ggplot2 
package in R (Hadley et al., 2020). 

3. Results 

3.1. Seasonal component 

Fig. 3 illustrates the intra-annual variation of daily mean air tem
perature (3A), total daily precipitation (3B) and total soil CO2 efflux 
(FCO2) measurements and median prediction of the seasonal trend (Ai, 
3C) at the scale of the study area and the uncertainty associated with this 
prediction. The mean [5th – 95th quantile] measured FCO2 was 7.04 [2.01 
– 13.30] µmol CO2 m− 2 s− 1 (n = 1431) and the predicted Ai was 6.13 
[2.60 – 9.30] µmol CO2 m− 2 s− 1 between June and October 2020 (n =
153 days) across the study area. Measured FCO2, and its variance, were 
higher during July and August – the months with the highest monthly 
average air temperature of 16.6 ◦C and 13.4 ◦C, respectively. 
Conversely, lower temperatures were observed in June, September and 
October, with monthly average temperature of 12.7 ◦C, 8.5 ◦C and 1.4 
◦C, respectively (Fig. 3C). The variance of measured FCO2 showed a 
strong relationship with daily mean air temperature variation (Fig. 3A). 
June’s cumulative precipitation was much lower (80.0 mm) than the 
other months (196.0 mm, 156.4 mm, 186.3 mm, and 191.2 mm for July, 
August, September and October, respectively) (see Appendix A for more 
details regarding climate data). 

The parameters of the dual logistic equation used to model Ai, which 
can be interpreted in order to study the seasonal trend, are presented in 
Table 2. The absolute value of spring rate of change in Ai (mS) was 
higher than the autumn rate of change (mA) (Table 2), suggesting that 
FCO2 increases slightly more rapidly in the spring and gradually 

decreases in the fall. Ai rose from 3.97 µmol CO2 m− 2 s− 1 (June 9, first 
day of measurement) to 9.35 µmol CO2 m− 2 s− 1 (July 29) and then fell 
back to 2.34 µmol CO2 m− 2 s− 1 (October 29, last day of measurement). 
The low standard deviation (SD) (Table 2) and error bar values (Fig. 3C) 
indicate a low uncertainty associated with the estimation of these pa
rameters and thus, on the estimation of Ai. 

3.2. Hyperparameter combinations used for modelling 

No sub-daily pattern or seasonal variation was observed in the pre
dicted residuals (Wi + Sj). Fig. 4 shows the predictive performance (R2) 
of the 125 Random Forest Regression models used to predict Wi + Sj. 

Both the combination of hyperparameters and the training-testing 
division had an influence on the performance of the model. For 
example, the combinations A, C, and D or divisions blue and yellow 
consistently produced higher R2 values on the testing datasets (Fig. 4). 
For the same combination of hyperparameters and training-testing di
vision, there was little variability in the models (n = 5) (Fig. 4). 
Therefore, we used 125 models with different hyperparameter combi
nations and training-testing divisions to consider these sources of vari
ability. In addition, using 125 models instead of just one allowed us to 
not randomly choose a model or pick the best or worst model in terms of 
prediction performance. 

3.3. Partitioning of total soil CO2 efflux variance 

Predicted Ai explained 36% of the variation in FCO2 measurements 
(R2 = 0.36, RMSE = 2.74, Fig. 5A). The increasing variance of the re
siduals with FCO2 measurements (Fig. 5A) provides an indication of the 
strong dependency of FCO2 to recent weather (Wi) and spatial compo
nent (Sj). This dependency is also supported by the predicted Wi + Sj, 
which explained 72% of the calculated Wi + Sj (R2 = 0.72, RMSE = 1.45, 
Fig. 5B). The combination of the predictions of Ai, Wi and Sj allowed to 
explain 81% of FCO2 measurements (R2 = 0.81, RMSE = 1.45, Fig. 5C). 

Fig. 8. Accumulated local effects (ALE) plots for the 10 variables. For a single variable, the Y-axis of the ALE plot represents the deviation between the model 
prediction for a given range of values (i.e., bin) of the variable and the mean model prediction (with the Y-axis = 0 representing the mean prediction of the model). 
The model with the test dataset R2 value that was closest to the median R2 value (test dataset) of 125 models was used to build the ALE plots. See Fig. 4 for the 
meaning of the boxplots. The values of the different graphs are presented in the Supplementary Material section. 

A. Harel et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 335 (2023) 109469

10

By subtracting the variance of Ai from the variance of the global model, 
we observed that Wi and Sj explained almost half of the variance in FCO2 
measurements (45%). 

3.4. Mapping total soil CO2 efflux 

The pattern of spatial variation in F̂CO2 was consistent from month to 
month (Fig. 6, A-E). The uncertainty in F̂CO2 was rather low (< 1.00 
µmol CO2 m− 2 s− 1), although some portions of the study area had a 
higher uncertainty (> 1.40 µmol CO2 m− 2 s− 1) (Fig. 6, F-J). 

3.5. External factors and total soil CO2 effluxes 

Fig. 7 shows the importance of each feature amongst the 125 models. 
According to the impurity importance metric (i.e., mean decrease in 
impurity), mean air temperature of the last two days and canopy height 
were the two variables that most influenced the estimation of RF (Fig. 7). 
They were followed by variables related to topography (in descending 
order of importance: valley bottom flatness index (MRVBF), conver
gence index, slope length, aspect, slope height, mid-slope position). 
Finally, the cumulative precipitation of the last 12 h was consistently the 
least important variable of the model (Fig. 7). 

Of the 10 variables, canopy height had the most influence on F̂CO2 . 
When canopy height increased from 5.39 m to 9.95 m, F̂CO2 increased on 
average by 1.58 µmol CO2 m− 2 s− 1 (Fig. 8A). Mean air temperature of the 
last two days was the second most important variable affecting F̂CO2 . 
Below 14 ◦C, air temperature had no effect on F̂CO2 , but above this 
threshold, an increase in air temperature from 14.05 ◦C to 20.70 ◦C led 
to an average increase in F̂CO2 of 1.41 µmol CO2 m− 2 s− 1 (Fig. 8B). 
Northeast facing slopes have on average higher F̂CO2 than south facing 
slopes (0.77 and 0.49 µmol CO2 m− 2 s− 1 respectively) (Fig. 8C). Moving 
away from the middle of the slope (down or up the slope) favors lower 
F̂CO2 on average (− 0.77 µmol CO2 m− 2 s− 1) (Fig. 8D). Diverging slopes 
and converging slopes (Fig. 8E) favoured lower F̂CO2 compared to reg
ular slopes (− 0.69 and − 0.50 µmol CO2 m− 2 s− 1 respectively). Between 
52 m and 277 m, increasing slope length generally decreased F̂CO2 
(− 0.52 µmol CO2 m− 2 s− 1), while it increased slightly between 277 m 
and 765 m (0.52 µmol CO2 m− 2 s− 1) (Fig. 8F). Interval air temperature, 
slope height, MRVBF (between 0.00 and 0.31, indicating it is not located 
in a valley bottom) and total precipitation over the past 12 h all had a 
small or negligible effect on F̂CO2 (Fig. 8G, H, I and J). 

4. Discussion 

Our study simulated the spatial and temporal behaviour of FCO2 over 
a perhumid boreal watershed dominated by balsam fir forest stands. We 
used external factors related to topography, vegetation height and 
recent weather to account for spatial and intra-seasonal variability in 
FCO2. The high sampling intensity allowed us to measure the importance 
of spatial and temporal heterogeneity in FCO2 at landscape-scale. 

In our study, the mean measured FCO2 was just below 7 µmol CO2 
m− 2 s− 1; some rare FCO2 measurements reached 16 µmol CO2 m− 2 s− 1. 
Overall, these values may seem high compared to other studies con
ducted in boreal ecosystems. For example, Laganière et al. (2012) and 
Khomik et al. (2006) measured total soil respiration rates of up to 7 µmol 
CO2 m− 2 s− 1 in boreal stands using a closed and dynamic chamber 
method, with cylinders inserted at 5 cm depth. However, Gau
mont-Guay et al. (2006) (using a closed and dynamic chamber method, 
cylinders inserted at 3–4 cm depth) and Rayment and Jarvis (2000) 

(using an open chamber system, cylinders inserted at 2–7 cm depth) 
reported rates of up to 9.2 and 14 µmol CO2 m− 2 s− 1, respectively. This 
could be explained by the young age of the stands in this study (here, 33 
years since clearcutting). For example, Payeur-Poirier et al. (2012) 
observed that juvenile boreal stands (33 years old) can have higher rates 
of soil respiration than pre-harvest (105 years old) or recently harvested 
(8 years old) stands while still being moderate to strong carbon sinks. 
Younger stands (10–15 years) have higher rates of heterotrophic soil 
respiration (related to greater availability of organic carbon at the soil 
surface) and autotrophic soil respiration (related to greater root 
biomass) than older stands (31–47 years) (Saiz et al., 2006). Microcli
matic conditions vary with stand age, with higher air temperatures and 
more daily air temperature variation in young stands (Lindenmayer 
et al., 2022), which influences soil conditions and the soil respiration 
rate. Stand age also regulates the response of autotrophic and hetero
trophic soil respiration to changes in temperature, with a higher sensi
tivity (Q10) in mature sites (45 years) compared to young sites (10 and 
20 years) (Ma et al., 2014). 

4.1. Seasonal trend 

We used a double logistic curve to estimate Ai as a function of DOY. 
This curve allows to decompose FCO2 into four stages on a yearly basis: 
minimum values in winter, a gradual increase in spring, a plateau in 
summer and a gradual decrease in autumn. This corresponds to the 
pattern of annual variation in soil respiration that has been reported in 
other studies in boreal (e.g., Morén and Lindroth, 2000; Rayment and 
Jarvis, 2000; Khomik et al., 2006) and temperate forests (e.g., Curiel 
Yuste et al., 2005). Consequently, parameters of double logistic curves 
could be easily used to compare FCO2 between years or studies. 

The relationship between air temperature and variance of FCO2 
(Fig. 3) suggests that spring and fall FCO2 are largely dependant on 
available energy and the effect of recent weather and local conditions is 
rather limited. Previous studies have shown that soil temperature and 
water content were the main variables responsible for the temporal 
variation of FCO2 (Rayment and Jarvis, 2000; Subke et al., 2003; Gau
mont-Guay et al., 2006; Khomik et al., 2006). According to Ai, FCO2 
increased rapidly during spring but decreased more slowly during late 
summer and fall. This phenomenon was observed in deciduous stands: 
for the same soil temperature in spring and autumn, the soil respiration 
rate was slightly higher in autumn due to the addition of fresh organic 
matter, which coincides with a decrease in the vegetation leaf area index 
due to shedding (Curiel Yuste et al., 2005). Another possibility is the 
seasonal variation in the allocation of photosynthetic products in the 
tree (Davidson and Holbrook, 2009). After mid-August, photosynthates 
are no longer distributed to the aerial parts of the trees; they are rather 
allocated to roots, where they support growth and the development of 
ectomycorrhizal fungi (Fortin and Lamhamedi, 2009), which could 
result in increased rhizosphere respiration. Lavigne et al. (2004) 
observed higher root respiration rates in early fall compared to late 
spring in a similar forest ecosystem. 

4.2. Spatial and intra-seasonal variation 

Our study demonstrated the usefulness of external factors to simulate 
spatial and intra-seasonal components of FCO2. FCO2 is linked to external 
factors through their influence on soil conditions (i.e., internal factors). 
Therefore, the use of external factors makes it possible to avoid using 
internal factors (e.g., soil temperature, soil water content, soil organic 
matter quantity and quality and microbial and root activity) for 
modelling purposes. The use of Random Forest Regression model and ALE 
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plots allowed us to quantify the individual effects of biotic and abiotic 
factors on FCO2. Further research is needed to establish how soil or air 
temperature ALE-plots compare to traditional Q10 approaches. In our 
study, the air temperature ALE-plot provided an efficient way to assess 
the effect of temperature on FCO2 with respect to other external factors. 
F̂CO2 showed higher values and variance during summer, which supports 
that the effects of recent weather and local abiotic factors on FCO2 are at 
a maximum during summer and less important during other periods. 

Vegetation can influence soil respiration rates in multiple ways 
through root respiration, which can account for a significant portion of 
total soil respiration in forest ecosystems (Ekblad and Högberg, 2001; 
Högberg et al., 2001, 2009) and respiration by heterotrophic organisms 
through litterfall (Davidson et al., 2002a; Sayer, 2006), dead organic 
matter and root exudates. In our study area, our model predicts higher 
FCO2 in areas with taller trees and vice versa. Since tree height can be 
used to characterize site productivity (Bélanger et al., 1995), we hy
pothesize that FCO2 are higher in the more productive sites in our study 
area. Tree height could be correlated to soil respiration through shading 
and its effect on microclimate (e.g., Greiser et al., 2018), as well as 
through photosynthetic activity (e.g., Högberg et al., 2001) and its effect 
on root activity (root respiration and rhizodeposition). Several studies 
have looked at the correlation between soil respiration and 
above-ground productivity (e.g., Raich, 1998; Reichstein et al., 2003); 
future studies should look at the specific effect of tree height on both 
compartments of soil respiration i.e., respiration by autotrophic or 
heterotrophic organisms. 

The valley bottom flatness index (MRVBF) was an important external 
factor in the model (Fig. 7). In our study, the valley bottom areas cor
responded to areas of poor drainage, covered with sphagnum moss and 
with small (5–7 m), densely packed fir trees. According to the mapping 
of the model’s FCO2 predictions, low FCO2 are predicted in valley bot
toms. However, on its own, MRVBF explained little variation in the 
prediction of Wi + Sj (Fig. 7). Thus, taken individually, MRVBF was 
likely not responsible for the low FCO2 values in these areas; it was rather 
a combined effect of the different topography-specific factors. In addi
tion, the fact that only a small proportion of the study area was 
composed of valley bottoms (2 plots out of 33 for which MRVBF > 1.5, i. 
e., 90 of the 1 428 FCO2 measurements) could distort the use of the mean 
decrease in impurity (MDI) to quantify the importance of MRVBF in the 
model. Either way, the fact that FCO2 was lower in valley bottom areas is 
consistent with other empirical studies (Davidson et al., 1998; Phillips 
et al., 2010). High soil water content can reduce the rate of soil respi
ration by reducing soil aeration (Linn and Doran, 1984) or limiting CO2 
diffusion (Skopp et al., 1990). 

Slope orientation and convergence index are also important factors 
according to the model. The model predicted higher average FCO2 on 
northeast-facing slopes than on south-facing slopes, which is consistent 
with the empirical measurements made by Abnee et al. (2004). Abnee 
et al. (2004) attributed these differences to wetter and more fertile soil 
conditions (higher pH, higher total N, and higher concentration of 
plant-extractable nutrients) favoring net primary productivity and mi
crobial and root activity. According to the model, FCO2 was higher on 
regular slopes than on divergent slopes, a result consistent with those of 
Warner et al. (2018), who called these regions “transition zones”. Pre
vious studies have shown that transition zones can be hotspots of soil 
respiration because of their optimal soil water content conditions and 
large amount of labile carbon pool (Webster et al., 2008). 

Air temperature of the last two days before the FCO2 measurement 
was the most important factor in the intra-seasonal trend. Soil temper
ature is the most important factor influencing soil respiration (Lloyd and 
Taylor, 1994) and air temperature is a key factor in predicting soil 

temperature under forest cover, although other factors such as leaf area 
index, soil depth and litter mass are also involved (Kang et al., 2000; 
Paul et al., 2004). Our results do not show a clear relationship between 
FCO2 and a 2-day interval of air temperature. This could be because 
temperature changes generally follow a seasonal pattern, so this effect 
on FCO2 was removed when Ai was subtracted from the FCO2 measure
ments. Moreover, the relationship between air and soil temperatures is 
complex and non-linear (Jungqvist et al., 2014; Lembrechts et al., 2022). 
However, rapid changes in soil temperature can alter CO2 production in 
the soil (Vargas et al., 2010). The use of air temperature seems prom
ising and has, for example, already been used to model soil respiration 
on a regional scale (Jian et al., 2022) or to calculate Q10 (i.e., the rate of 
change of soil respiration for a temperature increase of 10 ◦C) (Bond-
Lamberty and Thomson, 2010; Wang et al., 2010). Compared to soil 
temperature, air temperature data have the advantage of being available 
on a very large scale and with a very high accuracy (e.g., Oyler et al., 
2015; Hooker et al., 2018; Osborn et al., 2021). 

Cumulative precipitation of the last 12 h had little or no effect on 
predictions of FCO2. Generally, precipitation influences the water con
tent of the soil, causing a short and sudden increase in the soil respira
tion rate (Orchard and Cook, 1983; Savage and Davidson, 2003), which 
is particularly important in ecosystems with a drier climate (Kelliher 
et al., 2004). Given the humid climate of our study region, water is likely 
not a limiting factor for soil microbial processes. Jian et al. (2022) 
showed that using monthly precipitation instead of soil moisture content 
was not effective at the regional scale and that other factors, such as soil 
texture, should be considered. We also assume that the sampling strat
egy for soil respiration measurements could influence the correlation 
between soil respiration and precipitation. In our case, there were no soil 
respiration measurements during precipitation events (although, it 
could have rained in the 12 h that preceded FCO2 measurements). 

4.3. Partitioning total soil CO2 effluxes 

Our methodology makes it possible to partition FCO2 into its three 
components of variation (i.e., seasonal, intra-seasonal and spatial) based 
on punctual and repeated FCO2 measurements. amongst the different 
methods available to measure FCO2 (Norman et al., 1997; Janssens et al., 
2000), closed-dynamic-chamber systems allow for a higher spatial res
olution in the measurement of FCO2 (Savage and Davidson, 2003). Our 
results demonstrate the importance of intra-seasonal variation (effect of 
recent weather) and spatial variation (topography and vegetation 
height) on FCO2, two sources of variation that may be difficult to model 
from small FCO2 datasets. 

Several studies have investigated the minimum number of mea
surements of FCO2 required (per day, per year or per site) to properly 
characterize the daily and annual (e.g., Betson et al., 2007; Wang et al., 
2010; Perez-Quezada et al., 2016) and spatial variability (e.g., Davidson 
et al., 2002b; Herbst et al., 2009) of FCO2. However, little mention is 
made of the intra-seasonal variation in FCO2, a normal approach when 
the objective is to quantify annual rates of soil respiration. In any case, 
when modelling is based on an empirical approach (i.e., punctual and 
repeated measurements of soil CO2 flux), adequate characterization of 
spatial and intra-seasonal variations in soil respiration depends on the 
balance between the spatial and temporal distribution of soil CO2 flux 
measurements (Savage and Davidson, 2003). We hypothesize that when 
FCO2 is partitioned into its different patterns of variation, the proportion 
of each source of variation could be influenced by the temporal and 
spatial intensity of soil respiration measurements. In this study, we used 
topographic attributes and a canopy height model in combination with 
conditional Latin hypercube sampling for sampling design (Minasny 
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et al., 2013). Therefore, the selection and number of sites to be measured 
is important. More research is needed to test this hypothesis and its 
impact on soil respiration modelling. Soil respiration varies as much on a 
very fine scale (<1 m) (± 1.28 µmol CO2 m− 2 s− 1) than on a small scale 
(<10 m), and almost as much on a medium scale (>100 m) (Martin and 
Bolstad, 2009). While weekly or biweekly measurements are sufficient 
to estimate total annual soil respiration (Savage et al., 2008), deter
mining the minimum number of soil respiration measurements needed 
to properly quantify the intra-seasonal and spatial trend for a specific 
area requires further research. 

Conclusion 

In this study, we proposed a new methodology to model total soil 
CO2 effluxes (FCO2) at the landscape scale using external factors derived 
from remote sensing and climate data. Our approach is based on the 
partitioning of FCO2 into three sources of variation i.e., seasonal, intra- 
seasonal and spatial. The Random Forest Regression model, using 10 
external factors related to recent weather, topography and vegetation 
height, explained 81% of the variation in FCO2 measurements. While 
spatial and intra-seasonal variation explained 45% of the variation in 
FCO2 measurements, seasonal variation only explained 36%. In our study 
area, FCO2 was highest in stands with tall trees or when air temperature 
was high. Although there were only a few valley bottoms characterized 
by dense and small stands of balsam fir on sub-hydric drainage over our 
study area, these sites had lower FCO2 than more productive, moderately 
drained areas with higher tree heights. 

For the quantification of Ai, the use of the day of the year (DOY) as a 
predictor allows for low uncertainty, but it also means that the predicted 
Ai is specific to current climatic conditions and the area covered by our 
study area, which was relatively small (122 ha). Further research is 
needed to predict Ai as a function of external factors that may be 
available at high temporal resolution, such as air temperature, rainfall or 
LAI, e.g., from Earth observation satellites. Nevertheless, our research 
highlights the high spatial and temporal variability of FCO2 in the area. 
FCO2 exhibits a high level of variability amongst and within sites, 
recalling the importance of increasing our understanding of the impact 
of external factors on FCO2. We used ALE plots to understand and 
quantify the impact of external factors on FCO2, but this tool could also 
be used to better understand their effect on different soil respiration 
processes or to predict their response to changes in biotic or abiotic 
variables. 

FCO2 measurement campaigns should ensure that both intra-seasonal 

and spatial variations are considered, as they are as important as sea
sonal variation. This will allow FCO2 to be fully modelled from external 
factors without having to consider very small-scale soil conditions (i.e., 
temperature, moisture content, soil organic matter, soil microbial 
community and root activity). 
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during his graduate studies. 

Funding 

This work was conducted and funded as part of the Evap-for project 
of Ministère des Ressources naturelles et des Forêts (Quebec, Canada) 
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Appendix A. Variables used in the model 

For the cumulative precipitation of the last 12 h, the mean was calculated using a gamma distribution, with mean = α / β, where α (α > 0) is the 
shape parameter and β (β > 0) is the rate parameter. The package fitdistrplus (Delignette-Muller et al., 2020) was used. 

“The VIF values were calculated taking into account 10 variables, 3 weather variables (Table A1) + 7 topographic and vegetation variables 
(Table A2).” 

The VIF values were calculated taking into account 10 variables, 3 weather variables (Table A1) + 7 topographic and vegetation variables 
(Table A2). 
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Bö

hn
er

 a
nd

 S
el

ig
e,

 2
00

6)
 

Th
e 

he
ig

ht
 o

f t
he

 b
ac

k 
sl

op
e 

33
.4

2 
[4

.1
2 

– 
88

.9
2]

 
23

.6
7 

[5
.1

6 
– 

56
.2

6]
 

4.
70

 
Sl

op
e 

le
ng

th
 

Th
e 

le
ng

th
 o

f t
he

 b
ac

k 
sl

op
e 

21
8.

77
 [

17
.1

6 
– 

55
3.

30
] 

23
3.

25
 [2

4.
61

 –
 6

07
.0

5]
 

5.
31

 
Ve

ge
ta

tio
n 

Ca
no

py
 h

ei
gh

t m
od

el
 

H
ei

gh
t o

f t
he

 c
an

op
y 

(1
 m

) 
(L

iD
A

R 
20

16
) 

5.
25

 [
0.

81
 –

 8
.5

9]
 

5.
84

 [
2.

60
 –

 9
.4

2]
 

6.
97

  

A. Harel et al.                                                                                                                                                                                                                                   



Agricultural and Forest Meteorology 335 (2023) 109469

14

Appendix B. Modelling of total soil CO2 effluxes

Scheme of the different components of the total soil CO2 efflux (FCO2) modelled from the FCO2 measurements taken from one cylinder. The use of 
the spatial component (not shown here) implies multiple point measurements. 

Appendix C. Hyperparameters of the model 

Table C1 and C2 
Random Forest Regression model consists of combining a large number (n) of regression decision trees, where each regression decision tree is built from 

a bootstrap sample of the training data set and with a random subset of feature (predictive variables) (Hastie et al., 2009). The final output is obtained 
by averaging the outputs of all regression decision trees. Random Forest allows building a large ensemble of decorrelated trees that improves the overall 
performance compared to other algorithms. Random Forest trees are fast, easy to parametrize and mostly robust to overfitting (Hastie et al., 2009) 
when trained adequately. 

The construction of an individual regression decision tree is controlled by a set of hyperparameters. A decision tree consists of recursive splits of the 
data set (mother) into two data sets (daughter) until the maximum size of the tree is reached (max depth) or if there are not enough samples (here, FCO2 
measurements) in the mother data set to continue making splits (min sample split and min sample leaf). Splitting a mother data set into two daughter 
data sets is done by randomly selecting a subset of features (this number of features is called max features) amongst all the features and choosing the 
one (amongst the subset) that minimizes the sum of the square error of the two daughter data sets (Hastie et al., 2009). This operation is repeated to fit 
n regressions trees; the output of all regression trees is then averaged together and used as the final output of the model. 
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Laganière, J., Paré, D., Bergeron, Y., Chen, H.Y.H., 2012. The effect of boreal forest 
composition on soil respiration is mediated through variations in soil temperature 
and C quality. Soil Biol. Biochem. 53, 18–27. 

Lavigne, M.B., Foster, R.J., Goodine, G., 2004. Seasonal and annual changes in soil 
respiration in relation to soil temperature, water potential and trenching. Tree 
Physiol. 24 (4), 415–424. 

Lavigne, M.B., Ryan, M.G., Anderson, D.E., Baldocchi, D.D., Crill, P.M., Fitzjarrald, D.R., 
Striegl, R.G., 1997. Comparing nocturnal eddy covariance measurements to 
estimates of ecosystem respiration made by scaling chamber measurements at six 
coniferous boreal sites. J. Geophys. Res.: Atmos. 102 (D24), 28977–28985. 

Lembrechts, J.J., van den Hoogen, J., Aalto, J., Ashcroft, M.B., De Frenne, P., 
Kemppinen, J., Lenoir, J., 2022. Global maps of soil temperature. Glob. Chang. Biol. 
00, 1–35. 

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least 
squares. Quarterly of applied mathematics 2 (2), 164–168. 

Lindenmayer, D., Blanchard, W., McBurney, L., Bowd, E., Youngentob, K., Marsh, K., 
Taylor, C., 2022. Stand age related differences in forest microclimate. For. Ecol. 
Manage. 510, 120101. 

Lindroth, A., Grelle, A., Morén, A.-.S., 1998. Long-term measurements of boreal forest 
carbon balance reveal large temperature sensitivity. Glob. Chang. Biol. 4 (4), 
443–450. 

Linn, D.M., Doran, J.W., 1984. Effect of water-filled pore space on carbon dioxide and 
nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 48 (6), 
1267–1272. 

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Funct. 
Ecol. 8 (3), 315–323. 

Ma, Y., Piao, S., Sun, Z., Lin, X., Wang, T., Yue, C., Yang, Y., 2014. Stand ages regulate 
the response of soil respiration to temperature in a Larix principis-rupprechtii 
plantation. Agric. For. Meteorol. 184, 179–187. 

A. Harel et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0005
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0005
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0005
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0006
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0006
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0006
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0007
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0007
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0008
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0008
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0009
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0009
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0010
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0011
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0011
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0012
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0012
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0012
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0014
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0014
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0014
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0015
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0015
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0016
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0017
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0017
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0018
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0018
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0018
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0020
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0020
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0020
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0021
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0023
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0023
https://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?searchType=stnName&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtCentralLatMin=0&tnqh_x0026;txtCentralLatSec=0&tnqh_x0026;txtCentralLongMin=0&tnqh_x0026;txtCentralLongSec=0&tnqh_x0026;stnID=5682&tnqh_x0026;dispBack=1
https://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?searchType=stnName&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtCentralLatMin=0&tnqh_x0026;txtCentralLatSec=0&tnqh_x0026;txtCentralLongMin=0&tnqh_x0026;txtCentralLongSec=0&tnqh_x0026;stnID=5682&tnqh_x0026;dispBack=1
https://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?searchType=stnName&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtCentralLatMin=0&tnqh_x0026;txtCentralLatSec=0&tnqh_x0026;txtCentralLongMin=0&tnqh_x0026;txtCentralLongSec=0&tnqh_x0026;stnID=5682&tnqh_x0026;dispBack=1
https://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?searchType=stnName&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtCentralLatMin=0&tnqh_x0026;txtCentralLatSec=0&tnqh_x0026;txtCentralLongMin=0&tnqh_x0026;txtCentralLongSec=0&tnqh_x0026;stnID=5682&tnqh_x0026;dispBack=1
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
https://climat.meteo.gc.ca/climate_data/daily_data_f.html?hlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;dlyRange=2003-11-10%7C2022-09-09&tnqh_x0026;mlyRange=%7C&tnqh_x0026;StationID=32413&tnqh_x0026;Prov=QC&tnqh_x0026;urlExtension=_f.html&tnqh_x0026;searchType=stnName&tnqh_x0026;optLimit=yearRange&tnqh_x0026;StartYear=1840&tnqh_x0026;EndYear=2022&tnqh_x0026;selRowPerPage=25&tnqh_x0026;Line=1&tnqh_x0026;searchMethod=contains&tnqh_x0026;txtStationName=montmorency&tnqh_x0026;timeframe=2&tnqh_x0026;Day=9&tnqh_x0026;Year=2020&tnqh_x0026;Month=1#
http://refhub.elsevier.com/S0168-1923(23)00161-2/opt0Tf5ZOcFRn
http://refhub.elsevier.com/S0168-1923(23)00161-2/opt0Tf5ZOcFRn
http://refhub.elsevier.com/S0168-1923(23)00161-2/opt0Tf5ZOcFRn
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0027
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0028
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0029
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0030
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0031
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0033
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0034
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0035
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0036
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0037
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0038
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0039
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0040
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0041
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0042
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0043
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0043
https://github.com/blent-ai/ALEPython
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0045
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0046
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0047
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0048
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0049
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0050
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0052
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0053
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0054
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0055
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0056
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0057
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0058
http://refhub.elsevier.com/S0168-1923(23)00161-2/optPSLZctVLyd
http://refhub.elsevier.com/S0168-1923(23)00161-2/optPSLZctVLyd
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0059
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0060
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0061
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0062
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0063
http://refhub.elsevier.com/S0168-1923(23)00161-2/sbref0063


Agricultural and Forest Meteorology 335 (2023) 109469

16

MacMillan, R.A., Pettapiece, W.W., Nolan, S.C., Goddard, T.W., 2000. A generic 
procedure for automatically segmenting landforms into landform elements using 
DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst. 113 (1), 81–109. 

Malhi, Y., Baldocchi, D., Jarvis, P., 1999. The carbon balance of tropical, temperate and 
boreal forests. Plant Cell Environ. 22 (6), 715–740. 

Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear 
parameters. Journal of the society for Industrial and Applied Mathematics 11 (2), 
431–441. 

Martin, J.G., Bolstad, P.V., 2009. Variation of soil respiration at three spatial scales: 
components within measurements, intra-site variation and patterns on the 
landscape. Soil Biol. Biochem. 41 (3), 530–543. 

Marty, C., Piquette, J., Morin, H., Bussières, D., Thiffault, N., Houle, D., Paré, M.C., 2019. 
Nine years of in situ soil warming and topography impact the temperature sensitivity 
and basal respiration rate of the forest floor in a Canadian boreal forest. PLoS One 14 
(12), e0226909. 

McBratney, A.B., Mendonça Santos, M.L., Minasny, B., 2003. On digital soil mapping. 
Geoderma 117 (1), 3–52. 
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