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2

23 Abstract

24 Forest plantations play an increasingly important role in meeting global demand for 

25 wood. They usually have higher yield than naturally regenerated forests. Thus, 

26 plantations can support economically viable wood production, enable forest conservation 

27 elsewere, help mitigate climate change by contributing to carbon sequestration and 

28 increase forest resilience and resistance to biotic and abiotic stressors. If yield of 

29 plantations is not as high as anticipated, then their use could generate important 

30 sustainability issues. There are still major gaps in our understanding of the factors that 

31 influence yield, even with respect to black spruce, white spruce, and jack pine, three of 

32 the most commonly planted tree species in northeastern North America. Our objective 

33 was to evaluate the yield of forest plantations of these species over a 416 000  km2 region 

34 that was representative of northeastern North American forests. Contrary to our 

35 prediction, realized yield of operational plantations was consistently lower than 

36 anticipated. Site index and competition both played a significant role in determining the 

37 yield of plantations. In the context of uncertain realized yield of operational plantations, 

38 we emphasize the necessity of relying on adaptive management to determine harvest 

39 levels that are compatible with sustainable management objectives.

40

41 Keywords: sustainable forest management, allowable cut, silviculture, boreal forest, 

42 temperate forest 
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3

44 Introduction

45 Forest plantations play an increasingly important role in meeting global demand for wood 

46 products (McEwan et al. 2019) and are established to meet economic, conservation and 

47 climate change issues (Thiffault et al. 2023). They usually have higher yield than 

48 naturally regenerated forests, given that they make better use of the space due to 

49 optimized stocking that maximize space use, and applications of cultural treatments such 

50 as vegetation management and are based upon genetically improved material (e.g., 

51 Ackzell 1993; Paquette and Messier 2010). Thus, plantations can support economically 

52 viable wood production (Gardiner and Moore 2014), while enabling forest conservation 

53 elsewere (Betts et al. 2021; Royer-Tardif et al. 2021). Plantations can also help mitigate 

54 climate change by contributing to carbon sequestration (Wade et al. 2019; Ménard et al. 

55 2022; Portmann et al. 2022), and by increasing forest resilience and resistance to biotic 

56 and abiotic stressors (Ray et al. 2015; Palik et al. 2022). Hence, issues related to 

57 sustainability, such as ensuring economically viable wood production, supporting forest 

58 conservation, and promoting carbon sequestration, may arise if the yield of plantations 

59 does not meet anticipated levels. 

60 In forest management plans, forest yield is typically estimated using a combination of 

61 field measurements, remote sensing data, and growth and yield models. Yield models for 

62 plantations are usually developed for specific tree species, site fertility and management 

63 regimes (e.g., Stiell and Berry 1967; Bolghari and Bertrand 1984). They are based upon 

64 data that are collected from long-term research plots or from networks of permanent 

65 sampling plots, taking into account factors such as tree growth rates, mortality rates, and 

66 competition among trees. Yet, yield in forest plantations is driven by a complex array of 
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4

67 factors, including species selection, site preparation, planting density, and management 

68 practices. For example, Fu et al. (2007) demonstrated a significant increase in the growth 

69 of planted jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] 

70 B.S.P.), white pine (Pinus strobus L.), and white spruce (Picea glauca [Moench] Voss) 

71 over a 15-year period. This growth was observed to be significantly higher following 

72 high mechanical site preparation intensity, without additional vegetation management 

73 treatments. However, when chemical vegetation management was applied, site 

74 preparation showed no discernible impact on tree growth. Thus, the yield of plantations 

75 that are incorporated into forest management plans is highly dependent upon the data that 

76 are used for constructing growth and yield models. This dependence stresses the 

77 importance of establishing and managing plantations according to the same standards that 

78 are used to generate growth and yield models, to ensure that anticipated production is 

79 realized. Failure to do so would compromise the attainment of sustainable forest 

80 management objectives.

81 Moreover, regional differences in climate, soil and other environmental factors can 

82 substantially affect the yield of forest plantations, stressing the need for region-specific 

83 predictors of growth. For example, recent research that has simulated the effects of 

84 various CO2 emission scenarios has suggested that stand-level yield under a changing 

85 climate will vary by species, site quality, geographic locale, and emission scenario 

86 (Newton 2016). Yet, significant gaps remain in our understanding of the factors that 

87 influence yield, even with respect to black spruce, white spruce, and jack pine, three of 

88 the most frequently planted tree species in northeastern North America (CCFM 2023).

Page 4 of 34Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
in

is
te

re
 d

e 
l'E

ne
rg

ie
 o

n 
04

/1
2/

24
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



5

89 In this context, our objective was to evaluate the yield of forest plantations, which were 

90 established in Quebec, Canada, over a 416 000  km2 region that is representative of 

91 northeastern North American forests. More specifically, we aimed to identify the drivers 

92 of forest plantation yield. We predicted that plantation yield would be as high as 

93 anticipated, given that silviculture scenarios usually comprise adequate vegetation 

94 management strategies (MRN 2013). We also predicted that site index, planting density 

95 and competition would be important drivers of plantation yield (Wiensczyk et al. 2011; 

96 Neufeld et al. 2014; Barrette et al. 2019, 2021; Sharma 2022). To verify our predictions, 

97 we studied yield in operational plantations of the three most commonly planted tree 

98 species in northeastern North America. 

99 Materials and methods

100 Study area 

101 Our study area encompasses the actively managed forest region of Quebec (eastern 

102 Canada), which includes temperate and boreal forests that have been classified into four 

103 ecological regions (Grondin et al. 2007; Fig. 1). Climatic conditions in southern 

104 ecological regions are warmer than in northern regions, as would be expected, while 

105 precipitation regimes are generally similar (Table 1). 

106 The main natural disturbances include insect outbreaks (e.g., eastern spruce budworm 

107 [Choristoneura fumiferana]), windthrows and wildfires (Barrette et al. 2020). The most 

108 abundant tree species are black spruce, balsam fir (Abies balsamea [L.] Mill.), white or 

109 paper birch (Betula papyrifera Marsh.), yellow birch (B. alleghaniensis Britt.) and sugar 

110 maple (Acer saccharum Marsh.). Depending on the ecological region, these species are 

111 found in mixtures with varying densities of companion species, such as white spruce, red 
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6

112 spruce (Picea rubens Sarg.), jack pine, eastern white pine, red pine (Pinus resinosa Sol. 

113 ex Aiton), eastern hemlock (Tsuga canadensis [L.] Carrière), eastern white cedar or 

114 arborvitae (Thuja occidentalis L.), eastern larch or tamarack (Larix laricina [Du Roi] K. 

115 Koch), balsam poplar (Populus balsamifera L.), bigtooth aspen (Populus grandidentata 

116 Michx.), trembling aspen (Populus tremuloides Michx.), red maple (Acer rubrum L.), 

117 American beech (Fagus grandifolia Ehrh.), red oak (Quercus rubra L.), silver maple 

118 (Acer saccharinum L.), American ash (Fraxinus americana L.), American basswood 

119 (Tilia americana L.), and American elm (Ulmus americana L.) (MRN 2013).

120 Data 

121 We used a network of 475 sample plots that were established by the Government of 

122 Quebec to monitor operational plantation yield of the three most commonly planted tree 

123 species in northeastern North America, i.e., black spruce, white spruce and jack pine (Fig. 

124 1). These plots were established from 1995 to 1999 in plantations that were about 8-

125 years-old at the time. Planted trees were then tagged for monitoring purposes. Trees with 

126 DBH (diameter at breast height, 1.3 m) ≥ 1.1 cm were counted within 400-m2 circular 

127 plots, by species, origin (i.e., planted or naturally regenerated). DBH of each tree was 

128 measured in millimeters. Height (cm) of the 4 highest planted trees of the stand was also 

129 measured for dominant height estimation. Measurements were repeated up to six times in 

130 each plot, on a 5-year cycle. Vegetation management was performed based on 

131 governmental guidelines which includes site preparation and a number of tendings 

132 dependent on competition levels (MRN 2013; Barrette et al. 2020b).

133 Potential natural vegetation in each plot was obtained from the Eco-Forest Stand Map 

134 (MRNF 2009). Potential natural vegetation is a stand-level land classification unit that is 
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7

135 determined by climate, superficial deposits, soil texture, slope, drainage and indicator 

136 plant species in the understory (Grondin et al. 2014). By considering potential natural 

137 vegetation, we can anticipate the composition and resilience-driven successional 

138 trajectories of a given site (Barrette et al. 2019, 2021). Resilience refers to the capacity of 

139 a system to absorb a disturbance and reorganize so that the same structure and functions 

140 are essentially recovered (Gunderson, 2000). Assessing potential natural vegetation can 

141 assist in determining whether the plantation scenario aligns with or deviates from the 

142 resilience-driven successional trajectories. For example, a black spruce plantation 

143 scenario carried out on a black spruce potential natural vegetation or a black spruce 

144 plantation scenario carried out on a balsam fir potential natural vegetation, respectively. 

145 This assignment helps predict whether planted trees would be prone to intraspecific or 

146 interspecific competition (Barrette et al. 2019, 2021). Thus, the four ecological regions of 

147 our study can support a diversity of potential natural vegetation types, but they will 

148 typically maintain the potential natural vegetation of the species that denotes the region, 

149 e.g., black spruce-moss region will typically hold black spruce potential natural 

150 vegetation (Grondin et al. 2007). It should be noted that a white spruce plantation 

151 scenario will always deviate from resilience-driven successional trajectories, given that 

152 white spruce potential natural vegetation does not occur within the four ecological 

153 regions (Grondin et al. 2007; Barrette et al. 2014; Grondin et al. 2014). 

154 Data analysis 

155 To evaluate the yield of operational plantations, we compared their realized with their 

156 anticipated yield. To obtain realized plantation yield, we calculated stand basal area based 

157 on DBH of planted trees for each plot, by time-since-planting, i.e., classes of 10-15, 16-
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8

158 20, 21-25 and 26-34 years. These age classes were used to balance the number of 

159 plantations in each class, while representing age classes that are relevant to silviculture. 

160 To obtain anticipated yield of planted trees, we used stand basal area growth models that 

161 were developed for black spruce and jack pine plantations (Auger et al. 2021) and for 

162 white spruce plantations (Prégent et al. 2010; Auger and Power 2021). Anticipated yield 

163 of planted trees for each plantation at each measurement was estimated with the growth 

164 model according to their age, planting density and site index (i.e., mean height of the 100 

165 highest trees per hectare in meters at age 25-years-old, estimated using equations from 

166 Auger et al. 2021 and Prégent et al. 2010). To evaluate competition, we calculated stand 

167 basal area based on the DBH of naturally regenerated trees for each plot, by species and 

168 time-since-planting. Competition was quantified as a percentage of the total stand basal 

169 area, calculated as: (basal area of naturally regenerated trees / (basal area of naturally 

170 regenerated trees + basal area of planted trees)) × 100. Planted trees were excluded from 

171 the assessment of potential competitors, as our focus was on their yield. Composition of 

172 the competition was analyzed specifically in plantations with a scenario that deviates 

173 from or is aligned with resilience-driven successional trajectories. We used potential 

174 natural vegetation to determine whether the plantation scenario aligns with or deviates 

175 from resilience-driven successional trajectories (Barrette et al. 2019, 2021). 

176 The difference between realized plantation yield and anticipated yield of planted trees 

177 (i.e., yield gap) was calculated for each plantation for the oldest age class (i.e., 26- to 34-

178 years-old) since it provides an extended time depth for comprehensive analysis. The yield 

179 gap of a given plantation was expressed as a percentage of anticipated yield for that 

180 plantation: (realized yield – anticipated yield)/anticipated yield × 100). Plantations with a 
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9

181 realized yield lower than anticipated by more than 5% were considered to be 

182 unsuccessful; otherwise, they were considered successful. We analyzed the linear 

183 relationship between the yield gap and potential yield drivers (i.e., site index, planting 

184 density or competition; Wiensczyk et al. 2011; Neufeld et al. 2014; Barrette et al. 2019, 

185 2021; Sharma 2022) with simple linear regressions by ecoregion and species (PROC 

186 MIXED, SAS/STAT 15.1; SAS Institute, Cary, NC) .We also analyzed differences 

187 between successful and unsuccessful plantations for each potential yield driver with 

188 analysis of variance (one-way ANOVA), using yield status (i.e., successful or 

189 unsuccessful) as a fixed effect. We used α = 0.05 as the significance threshold. Analyses 

190 conformed to normality and homogeneity of variance requirements. 

191 Results

192 Realized plantation yield 

193 Realized yield was always lower than anticipated yield 26 to 34 years after planting (Fig. 

194 2).  Site index was a significant yield driver in boreal regions, more so than in the 

195 temperate regions. The yield gap generally decreased with increasing site index in all 

196 ecological regions (Fig. 3). In boreal regions, site index of successful plantations was 

197 always higher than the site index of unsuccessful plantations, while site index was 

198 generally similar between successful and unsuccessful plantations in temperate regions 

199 (Tables 2 and 3).

200 Planting density was rarely a significant yield driver. The yield gap was almost always 

201 not related to planting density (Fig. 4). Moreover, planting density was generally similar 

202 between successful and unsuccessful plantations (Tables 2 and 3).
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10

203 Competition was a significant yield driver in both boreal and temperate regions. The 

204 yield gap generally decreased with increasing competition (Fig. 5). Moreover, 

205 competition was always higher in successful plantations than in unsuccessful plantations 

206 (Tables 2 and 3).

207 Composition of the competition in unsuccessful plantations

208 In unsuccessful black spruce plantations, balsam fir and hardwoods were the main 

209 naturally regenerated species when the plantation scenario deviated from resilience-

210 driven successional trajectories, i.e., black spruce plantations that were located on balsam 

211 fir potential natural vegetations (Fig. 6). Other conifers and black spruce also regenerated 

212 naturally but mainly in boreal regions. When the plantation scenario was aligned with 

213 resilience-driven successional trajectories (i.e., black spruce plantations located on black 

214 spruce potential natural vegetations), black spruce was the main naturally regenerated 

215 species followed mostly by other coniferous and hardwoods in the black spruce moss 

216 region, by other conifers in balsam fir-white birch region, and by balsam fir and 

217 hardwoods in the balsam fir-yellow birch region (Fig. 7).

218 In unsuccessful white spruce plantations, for which the scenario always deviates from 

219 resilience-driven successional trajectories, balsam fir and hardwoods were the main 

220 naturally regenerated species (Fig. 6). Black spruce and other conifers also regenerated 

221 naturally but mainly in boreal regions.

222 In unsuccessful jack pine plantations, balsam fir and hardwoods were the main naturally 

223 regenerated species when the plantation scenario deviated from resilience-driven 

224 successional trajectories, i.e., jack pine plantations that were located on balsam fir 

225 potential natural vegetation types (Fig. 6). Jack pine also regenerated naturally but only in 
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11

226 boreal regions. When the plantation scenario was aligned with resilience-driven 

227 successional trajectories (i.e., jack pine plantations located on black spruce potential 

228 natural vegetations), black spruce was the main naturally regenerated tree species, 

229 followed mostly by jack pine and other coniferous in the black spruce moss region, by 

230 jack pine in the balsam fir-white birch region, and by hardwoods in the balsam fir-yellow 

231 birch region (Fig. 7).

232 Discussion 

233 Contrary to our prediction, realized yield of operational plantations was consistently 

234 lower than anticipated yield that had been projected by growth and yield models for 

235 plantations of similar ages, planting densities and site indices. The yield gap at ages 26-

236 34 varied between -97% and +83%, depending on ecological region and planted species. 

237 This finding suggests that anticipated yield may not be achieved in operational 

238 plantations, thereby potentially compromising the attainment of sustainable forest 

239 management objectives. For instance, in Quebec, where about 20% of annual harvested 

240 sites are regenerated using plantation scenarios (Lapointe 2022), the calculation of 

241 allowable cut levels considers the potential increase in yield of planted areas compared to 

242 natural regeneration (Poulin 2013). To account for differences between anticipated and 

243 realized yield, an adaptive management process is necessary. Adaptive management is a 

244 process involving periodic monitoring to assess the achievement of objectives and the 

245 need for adaptations in response to new contexts or knowledge (Barrette et al 2014). As 

246 such, the calculation of allowable cut levels in Quebec is revised every five years, taking 

247 into account the most recent survey data and research findings. This practice is crucial in 
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248 the context of sustainable forest management, where the success of plantation forestry 

249 plays a pivotal role in determining the level of sustainable harvest (BFeC 2015).

250 As predicted, site index played a significant role in determining the yield status of 

251 plantations in boreal regions, but it did not have much influence on yield status in 

252 temperate regions. In boreal regions, we observed that yield of plantations that were 

253 established on sites with low site indices was lower than anticipated, while those that 

254 were established on sites with higher indices exhibited the anticipated yield. One possible 

255 explanation for the yield gap in sites with lower site index could be their 

256 underrepresentation in the plot network that was used for constructing growth models. 

257 Prégent and Végiard (2000) studied the growth and yield of 41 of the oldest black spruce 

258 plantations in northern Quebec on mesic sites (~98%) and found that nearly 34% of the 

259 plots that were studied had site quality indices below the minimum value used to 

260 construct yield tables for this species at that time (Prégent et al. 1996). Although the 

261 latest growth models have incorporated a greater number of plantations, there continues 

262 to be an underrepresentation of lower site index classes, notably for black spruce and 

263 white spruce plantations (Prégent et al. 2010; Auger et al. 2021).

264 Another factor could be variation in plantation establishment techniques. After harvest, 

265 low fertility sites in boreal ecosystems of northeastern Canada are typically colonized by 

266 ericaceous shrubs, which negatively affect conifer establishment and growth (Mallik 

267 2003). Studies have demonstrated that mechanical site preparation treatments can 

268 enhance seedling growth, particularly by reducing understory vegetation cover and 

269 rhizomatous growth (Wotherspoon et al. 2020; Reicis et al. 2023). Yet, the intensity of 

270 the treatment can influence its effect on seedling growth, with more intensive treatments 
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271 favouring faster height growth compared to lower intensity treatments (Thiffault et al. 

272 2004), thereby affecting the site index over time. Consequently, differences between 

273 establishment practices in the modelling plots and operational plantations may lead to 

274 variation in yield.

275 Contrary to our prediction, planting density was rarely a driver of yield. Planting density 

276 is usually recognized to play an important role in plantation yield (Thiffault et al. 2021). 

277 Yet, we may have not been able to link plantation density to the yield status of 

278 plantations, given that it did not vary significantly in our plots. Moreover, yield tables for 

279 black spruce, white spruce and jack pine are more strongly affected by site index than by 

280 planting density (Prégent et al. 2010, Auger et al. 2021).

281 As predicted, competition was a significant driver of yield in both boreal and temperate 

282 regions where it played a major role in determining the yield status of plantations. 

283 Paquette and Messier (2011) also found that tree yield was determined mostly by the 

284 intensity of competition in such regions. Moreover, it is widely recognized that yield of 

285 forest plantations is closely linked to competition by naturally regenerating tree species 

286 (Wiensczyk et al. 2011; Hawkins et al. 2012; Faure-Lacroix et al. 2013; Neufeld et al. 

287 2014; Bérubé-Deschênes et al. 2017). Finally, Anyomi et al. (2014) also found that 

288 species composition and successional changes drive yield more so than do climatic 

289 effects and site index.

290 Despite vegetation management was performed (MRN 2013; Barrette et al. 2020b), 

291 competition from naturally regenerated trees likely occurred in forest plantations because 

292 of resilience-driven, successional trajectories. Depending on whether the plantation 

293 scenario was aligned with or deviated from resilience-driven successional trajectories, 
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294 planted species respectively suffered mostly from intraspecific or interspecific 

295 competition. It is recognized that naturally regenerating tree species can recover to the 

296 detriment of planted species because of the resilience of the natural forest (Barrette et al. 

297 2019, 2021).  

298 Forest management implications

299 Forest plantations could generate important sustainability issues if their yield is not as 

300 high as anticipated (Gardiner and Moore 2014; Wade et al. 2019; Betts et al. 2021; 

301 Portmann et al. 2022). To ensure that plantations promote sustainability, forest managers 

302 could favour establishment of plantations in stands with high site indices, but more 

303 importantly, favour plantation scenarios that are aligned with resilience-driven, 

304 successional trajectories that would reduce interspecific competition (Barrette et al. 2019, 

305 2021). 

306 Efforts have already been made to map site index values for white spruce, black spruce 

307 and jack pine plantations in eastern Canada (Barrette et al. 2022). Yet these maps do not 

308 consider the potential effects of competition that are incurred by naturally regenerated 

309 trees. Integrating plantation scenarios that are aligned with resilience-driven successional 

310 trajectories to these existing site index maps could help to identify the best sites for 

311 establishing forest plantations. Moreover, integration of this information could help 

312 determine the level of tending that is needed to reach anticipated plantation yield. A 

313 within-hectare specific predictors of growth would also eventually be useful to ensure 

314 plantation reach anticipated yield (Watt et al. 2017). 

315 Reducing interspecific competition in white spruce plantations may prove more difficult, 

316 since there is no resilience-driven successional trajectory that is oriented towards white 
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317 spruce stands (Grondin et al. 2007; Grondin et al. 2014; Barrette et al. 2014). White 

318 spruce plantations, therefore, may need more intensive tending for them to achieve 

319 anticipated yield even with the use of site index maps. Finally, in the context of uncertain 

320 realized yield of operational plantations, we emphasize the necessity of relying on 

321 adaptive management to determine harvest levels that are compatible with sustainable 

322 management objectives.
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503 Table 1. Climatic conditions in the four ecological regions.

Mean annual 
temperature 
(°C)

Mean annual 
precipitation 
(mm)

Mean annual 
number of 
frost-free days

Boreal regions 
Black spruce-moss region -2.0 1000 165

Balsam fir-white birch region 0.5 1200 175

Temperate regions 
Balsam fir-yellow birch region 1.5 1100 180

Sugar maple-yellow birch region 3.0 1100 190
504

505

Page 24 of 34Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

M
in

is
te

re
 d

e 
l'E

ne
rg

ie
 o

n 
04

/1
2/

24
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



25

506 Table 2. Characteristics of successful (Succ.) and unsuccessful (UnSucc.) plantations by 
507 ecological region and planted species. Different superscript letters indicate significant 
508 differences (see Table 3) . 

Number of 
plots

Site index 
(m)

Planting 
density 

(trees·ha-1)
Competition 

(%) *

Succ. UnSucc. Succ. UnSucc. Succ. UnSucc. Succ. UnSucc.

Boreal regions
Black spruce-moss region

Black spruce plantation 11 53 8 a 7 b 2458 a 2424 a 7 a 50 b

Jack pine plantation 10 33 11 a 9 b 2587 a 2308 b 4 a 27 b

Balsam fir-white birch region
Black spruce plantation 28 54 9 a 8 b 2565 a 2339 b 13 a 44 b

White spruce plantation 10 52 11 a 9 b 2602 a 2443 a 4 a 33 b

Jack pine plantation 9 44 12 a 10 b 2327 a 2300 a 4 a 22 b

Temperate regions
Balsam fir-yellow birch region

Black spruce plantation 16 42 10 a 10 a 2570 a 2576 a 10 a 26 b

White spruce plantation 15 28 11 a 11 a 2334 a 2618 a 6 a 26 b

Jack pine plantation 3 17 14 a 13 a 2359 a 2682 a 5 a 7 a

Sugar maple-yellow birch region
Black spruce plantation 13 11 10 a 11 a 2808 a 2716 a 8 a 10 a

White spruce plantation 10 16 12 a 11 b 2657 a 2638 a 6 a 19 b

509 * 26–34-year-old plantations 
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510 Table 3. ANOVA and associated p-values of characteristics of plantations by ecological 
511 region and planted species. Numerator degrees-of-freedom is 1 for all analyses, with one 
512 fixed effect (yield status, i.e., successful or unsuccessful). Df den. is denominator 
513 degrees-of-freedom. Significant effects (p < 0.05) are highlighted in boldface. 

Site index Planting density 
Competition 

(%) *
Df 

den. F-value p-value F-value p-value F-value p-value

Boreal regions
Black spruce-moss region

Black spruce plantation 79 6.91 0.010 0.12 0.734 39.23 < 0.001

Jack pine plantation 51 16.04 < 0.001 4.60 0.037 12.14 0.001

Balsam fir-white birch region
Black spruce plantation 104 5.05 0.027 9.78 0.002 63.34 < 0.001

White spruce plantation 79 20.49 < 0.001 2.29 0.134 18.28 < 0.001

Jack pine plantation 68 5.81 0.019 0.05 0.830 15.15 < 0.001

Temperate regions
Balsam fir-yellow birch region

Black spruce plantation 68 2.14 0.148 0.00 0.957 9.03 0.004

White spruce plantation 46 1.49 0.228 4.03 0.051 14.92 < 0.001

Jack pine plantation 28 3.22 0.084 2.72 0.110 0.71 0.406

Sugar maple-yellow birch region
Black spruce plantation 28 1.35 0.256 0.15 0.706 0.32 0.578
White spruce plantation 29 4.48 0.043 0.02 0.884 10.99 0.003

514 * 26–34-year-old plantations 
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515 Figure captions

516 Fig 1 Locations of plots in plantations of black spruce (black triangles; n = 228), white 

517 spruce (white triangles; n = 131) and jack pine (white circles; n = 116). Figure 1 was 

518 created using ArcMap version 10.4.1 and assembled from the open access data of the 

519 MRNF available at https://mffp.gouv.qc.ca/le-ministere/acces-aux-donnees-gratuites/.

520 Fig 2 Realized vs anticipated plantation yield.  

521 Fig 3 Yield gap according to site index in 26- to 34-year-old plantations.

522 Fig 4 Yield gap according to planting density in 26- to 34-year-old plantations.

523 Fig 5 Yield gap according to competition in 26- to 34-year-old plantations. X-axis runs 

524 from 100 to 0%. Competition was quantified as a percentage of the total stand basal area, 

525 calculated as: (basal area of naturally regenerated trees / (basal area of naturally 

526 regenerated trees + basal area of planted trees)) × 100.

527 Fig 6 Composition of the competition in unsuccessful 26- to 34-year-old plantations with 

528 a plantation scenario that deviates from resilience-driven successional trajectories, i.e., 

529 black spruce and jack pine plantations that are located on balsam fir potential natural 

530 vegetations types and white spruce plantations that are located on balsam fir or on black 

531 spruce potential natural vegetation types. 

532 Fig 7 Composition of the competition in unsuccessful 26- to 34-year-old plantations with 

533 a plantation scenario aligned with resilience-driven ,successional trajectories, i.e., black 

534 spruce and jack pine plantations that are located on black spruce potential natural 

535 vegetation types.
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Sugar maple-Yellow birch

Balsam fir-White birch

Balsam fir-Yellow birch

Black spruce moss
Boreal ecological regions

Temperate ecological regions

Fig 1 Locations of plots in plantations of black spruce (black triangles; n = 228), white spruce 
(white triangles; n = 131) and jack pine (white circles; n = 116).

Fig 1 Martin Barrette et al. 
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Fig 2 Realized vs anticipated plantation yield.  
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Fig 3 Martin Barrette et al. 

Fig 3 Yield gap according to site index in 26- to 34-year-old plantations.
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Fig 4 Yield gap according to planting density in 26- to 34-year-old plantations.
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Fig 5 Martin Barrette et al. 

Fig 5 Yield gap according to competition in 26- to 34-year-old plantations. X-axis runs from 100 to 0%.
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Fig 6 Martin Barrette et al. 

Fig 6 Composition of the competition in unsuccessful 26- to 34-year-old plantations with a plantation 
scenario that deviates from resilience-driven successional trajectories, i.e., black spruce and jack pine 
plantations that are located on balsam fir potential natural vegetations types and white spruce plantations 
that are located on balsam fir or on black spruce potential natural vegetation types.
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Fig 7 Martin Barrette et al. 

Fig 7 Composition of the competition in unsuccessful 26- to 34-year-old plantations with a plantation 
scenario aligned with resilience-driven ,successional trajectories, i.e., black spruce and jack pine 
plantations that are located on black spruce potential natural vegetation types.
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