Following the appointment of the new Cabinet, the Forest Sector now reports to the ministère des Ressources naturelles et des Forêts, while the Wildlife and Parks Sectors report to the ministère de l'Environnement, de la Lutte aux changements climatiques, de la Faune et des Parcs. Adjustments will be made to the website over time.

Back to publications

Summary

Published in Forest Ecology and Management 568: 122069. https://doi.org/10.1016/j.foreco.2024.122069

Litterfall is a major pathway for transferring aboveground biomass to the forest floor and thus plays an important role in building forest soil carbon stocks. However, inter- and intra-annual variability of litterfall remains poorly documented, especially in North American temperate and boreal forests, due to the lack of recent long-term studies at high sampling frequencies. This potentially creates uncertainties in estimates of forest carbon budget models. The objectives of the present study were to 1) quantify the mean annual flux, interannual variability, and seasonality of litterfall in three sites (dominated respectively by sugar maple (Acer saccharum Marsh.), balsam fir (Abies balsamea (L.) Mill. 1768), and black spruce (Picea mariana (Mill.) B.S.P.)) in eastern Canada over a period of 22–32 years, 2) relate the litterfall amounts and temporal variations to the changes in the size of major organic matter pools in these ecosystems, and 3) compare our litterfall estimates with reference values used in national greenhouse gas inventories. Litterfall production decreased from the sugar maple to the balsam fir and black spruce sites, preponderantly due to species composition. Litterfall evolution was related to the aboveground biomass of live trees in both conifer sites; in contrast, in the broadleaf site, changes in forest composition and structure were apparently the main drivers. The litterfall seasonality varied between broadleaf and conifer sites and could be explained by a sigmoidal model. Substantial departures from the seasonality for some given years were likely due to important climatic anomalies. Forest floor biomass remained stable over time at all three sites despite the increase in litterfall at the balsam fir and sugar maple sites and rapid forest floor turnover at the latter site. Our analyses of litterfall suggest that reference values from the literature used for national greenhouse gas inventories underestimate annual litterfall and forest floor carbon stocks for temperate and boreal forests.

Sector(s): 

Forêt

Categorie(s): 

Scientific Article

Theme(s): 

Ecosystems and Environment, Forestry Research, Forests

Departmental author(s): 

Author(s)

FRISKO, Rosalie, Louis DUCHESNE, Evelyne THIFFAULT, Daniel HOULE and Rock OUIMET

Year of publication :

2024

Format :

PDF

ISSN

0378-1127

Keywords :

écosystèmes et environnement, ecosystems and environment, litterfall production, seasonal pattern, temperate and boreal forest, forest floor stocks, carbon cycle, climate anomalies, production de litière, patron saisonnier, forêt tempérée et boréale, réservoir de matière organique du sol, cycle du carbone, anomalies limatiques

Partagez