Following the appointment of the new Cabinet, the Forest Sector now reports to the ministère des Ressources naturelles et des Forêts, while the Wildlife and Parks Sectors report to the ministère de l'Environnement, de la Lutte aux changements climatiques, de la Faune et des Parcs. Adjustments will be made to the website over time.

Back to publications

Summary

Published in Forest Ecology and Management 481: 118744. https://doi.org/10.1016/j.foreco.2020.118744

Over the last century, forest management has modified the natural disturbance regime of temperate and boreal forest regions. Consequently, this new disturbance regime may have profoundly affected the structure, composition and associated carbon stocks of forest ecosystems. The aim of this study is to document structural and compositional changes (1925–2015) in an actively managed forest region of eastern North America and their effects on above-ground biomass (AGB). We reconstructed stand structure, species composition and AGB of the preindustrial forest using 54,343 plots sampled by the Price Brothers & Company from 1924 to 1930. The present-day forest was described using 9561 plots surveyed during the most recent decadal forest inventories (1980s, 1990s, 2000s, 2010s) conducted by the Government of Quebec, eastern Canada. Between 1925 and 2015, the age structure shifted from a dominance of old-growth and mature stands (>80 years) to one of immature stands (<40 years) where early successional deciduous species increased in importance. The most striking difference was the sharp increase in stand density (>72%). Accordingly, tree diameter distribution changed markedly as a result of a strong increase of the smallest tree class to the expense of larger tree classes. Despite this structural reorganization, AGB has remained stable. Forest management history has induced a major forest structure reorganization. Aerial carbon stocks remain stable and resilient despite the strong density increase of small trees. The sharp increase in stand density could have significant impacts on biodiversity and resilience. In accordance with ecological forestry principles, the restoration of more natural forest conditions is expected to reduce the possible detrimental effects of forest management.

Sector(s): 

Forests

Categorie(s): 

Scientific Article

Theme(s): 

Forest Ecology, Forestry Research, Forests

Departmental author(s): 

Author(s)

BOUCHER, Yan, Isabelle AUGER, Dominique ARSENEAULT, Tasneem ELZEIN, Luc SIROIS

Year of publication :

2021

Format :

PDF available upon request

ISSN

0378-1127

Keywords :

forêts mixtes, densité, biomasse, aménagement forestier, perturbations, écologie forestière, article scientifique de la recherche forestière, forest ecology, density, biomass, forest management, disturbances, temperate forests, forestry research scientific article

Partagez