MÉMOIRE N° 45

PROJET INTERPROVINCIAL DE FERTILISATION DES FORÊTS NATURELLES

I- EFFETS DE LA FERTILISATION SUR QUELQUES CARACTÉRISTIQUES DE SEPT SAPINIÈRES EN GASPÉSIE

par Jean-Marc Veilleux et Gilles Sheedy
JEAN-MARC VEILLEUX est bachelier ès sciences appliquées (foresterie) de l'université Laval depuis 1965 et maître ès sciences forestières de la même institution depuis 1975. En 1965, il entrait à la division des sols de l'ancien Bureau de sylviculture et de botanique du ministère des Terres et Forêts du Québec et, en 1967, il passait au Service de la recherche, à titre de chargé de recherches en fertilité des sols et reboisement.

GILLES SHEEDY a fait ses études à la faculté de Foresterie et de Géodésie de l'université Laval où il obtenait son baccalauréat en foresterie en 1969. Il est depuis lors à l'emploi du Service de la recherche du ministère des Terres et Forêts, à titre de chargé de recherches en fertilité et fertilisation des forêts. L'université Laval lui a décerné en 1976 le diplôme de Maître ès sciences forestières.
PROJET INTERPROVINCIAL DE FERTILISATION
DES FORETS NATURELLES

I - EFFETS DE LA FERTILISATION SUR QUELQUES CARACTERISTIQUES
DE SEPT SAPINIERES EN GASPESIE

par

JEAN-MARC VEILLEUX et GILLES SHEEDY

MEMOIRE N° 45

SERVICE DE LA RECHERCHE
DIRECTION GENERALE DES FORETS
MINISTERE DES TERRES ET FORETS
1978
ERRATA & ADDENDA

page-parag-ligne
vii 1 4 \(\ldots m^3/ha, \ldots \)
1 2 4 \(\ldots, \) Hagner, 1967).
3 2 2 \(\ldots\) Rowe (1959)
4 tab. 1 col. 1 longitude ouest
28 2 5 figures 4 et 5
31 1 8 figure 5
33 2 5 Veilleux, 1976
33 3 1 figures 6 à 11
37 1 1 placettes fertilisées en 1970
38 2 1 tableau 14
41 2 2 figure 12
43 1 5 tableau 17
43 2 6 teneurs en azote
43 3 4 Roberge (1976)
44 3 3 Gagnon, Roberge et Swan (1976)
49 PERLAND, M.G.
Résultats du premier remseuvage quinquenial dans trente
Projet interprovincial de fertilisation des forêts
naturelles. Canada, Min. Env., Serv. Can. des For.,

Dépôt légal

Bibliothèque nationale du Québec

ii
AVANT-PROPOS

Le Projet interprovincial de fertilisation des forêts naturelles a été proposé en 1968 par l'Institut canadien de recherches sur les pâtes et papiers. Ce projet couvre la majorité des provinces canadiennes à l'exception de Terre-Neuve, de l'Ile-du-Prince-Édouard et de la Colombie-Britannique et vise à connaître les réactions possibles à la fertilisation de nos essences résineuses les plus importantes en regard des possibilités d'utilisation de cette technique dans l'aménagement de nos forêts.

Le comité technique du projet comprend des représentants des ministères provinciaux impliqués, du ministère de l'Environnement du Canada, de l'Institut canadien de recherches sur les pâtes et papiers et des universités Laval, de Toronto et du Nouveau-Brunswick.

Tous les renseignements relatifs à l'historique, la conception, le dispositif expérimental et les méthodes de travail du Projet interprovincial de fertilisation des forêts naturelles sont contenus dans le rapport d'étape 1969-72 (Anon., 1973). Depuis 1968, un total de 80 dispositifs normalisés a été établi dans le cadre de ce projet.
et les résultats d'accroissement du premier remesurage quinquennal d'une
trentaine de ces installations ont été publiés par Weetman et al., 1976.
RESUME

La fertilisation de sept stations représentatives de la sapinière à bouleau blanc, situées dans la péninsule gaspésienne, a donné des gains de croissance modérés après cinq ans. Les accroissements supplémentaires en volume total dus aux traitements s'échelonnent en moyenne entre 5,8 et 8,7 m³/ha, soit 20 à 30 p. 100 d'augmentation. L'azote a été l'élément le plus efficace, ce qui confirme l'hypothèse d'une faible disponibilité de cet élément dans nos forêts.

Le nombre de recrus ainsi que la mortalité, qui affecte surtout les tiges des étages intermédiaires et supprimés, sont plus élevés dans les placettes fertilisées. En 1974, les dommages attribuables à la tordeuse des bourgeons de l'épinette, bien que très importants, n'auraient causé que peu de mortalité. Toutefois, ces dommages, qui affectent la croissance et la vitalité du sapin, atténuent la réaction à la fertilisation. Advenant que l'infestation de l'insecte progresse au cours des prochaines années, l'expérience serait fortement compromise.

Les analyses annuelles des aiguilles de l'année courante de même qu'une analyse des sols après la fertilisation ont permis de suivre et de connaître le devenir des engrais ajoutés au sol.
ABSTRACT

Fertilization of seven typical balsam fir white birch stands in the Gaspé Peninsula produced moderate growth increment after five years. Total volume increments due to the treatments have mean values between 5.8 and 8.7 m²/ha, an increase of 20 to 30% p. 100. Nitrogen is the most efficient element, which confirms the hypothesis that this element is not very much available in our forests.

Number of new growths, and mortality which mostly affects stems in the intermediate and suppressed strata, are more important in the fertilized plots. In 1974, damages imputable to spruce budworm, though important, had caused very little mortality. But as they affect balsam fir growth and vitality, they attenuate response to fertilization. Should the insect epidemic make headway in the next few years, the experiment would be much jeopardized.

Annual analyses of the current-year needles as well as an analysis of the soil after fertilization have helped to follow and recognize the fate of fertilizers added to the soil.
TABLE DES MATIERES

AVANT-PROPOS .. iii

RESUME .. v

ABSTRACT ... vii

TABLE DES MATIERES ix

LISTE DES TABLEAUX xi

LISTE DES FIGURES xiii

INTRODUCTION 1

CHAPITRE I - MATERIEL ET METHODES EXPERIMENTALES 1
 1.1 Description des stations 3
 1.2 Dispositif experimental 3
 1.3 Plan de fertilisation 7
 1.4 Observations meteorologiques et precipitation ... 7
 1.5 Recolte, preparation et analyse des tissus 7
 1.6 Mesures de longueur et de poids des aiguilles 9
 1.7 Echantillonnage du sol 11
 1.8 Observations sur les dommages causes par la 11
 tordeuse des bourgeons de l'epinette
 1.9 Compilations et analyses statistiques 12

CHAPITRE II - RESULTATS ET DISCUSSION 13
 2.1 Resultats de croissance 15
 2.1.1 Croissance apres cinq ans 15
 2.1.2 Accroissement en volume marchand due aux recrus 17
 2.1.3 Mortalite 17
2.2 Observations sur les dommages causés
par la tordeuse 27
2.3 Variation en longueur et poids des aiguilles 28
 2.3.1 Secteur Lemieux, 69-06 31
 2.3.2 Secteur Chabot, 69-07 31
2.4 Analyses chimiques des aiguilles 31
 2.4.1 Secteur Lemieux, 69-06 33
 2.4.2 Secteur Chabot, 69-07 38
 2.4.3 Secteurs Cuoq (69-01) et Horton (69-02) ... 39

2.5 Azote total et azote ammoniacal des horizons du sol .. 39
 2.5.1 Azote total, secteur Lemieux 41
 2.5.2 Azote total, secteur Chabot 41
 2.5.3 Azote ammoniacal, secteur Chabot 43
 2.5.4 Comparaison des deux secteurs 43

CONCLUSION .. 45

BIBLIOGRAPHIE 49

APPENDICES .. 51
<table>
<thead>
<tr>
<th>Tableau</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tableau 1</td>
<td>Localisation des secteurs expérimentaux et données climatiques prévalant dans les régions concernées</td>
<td>4</td>
</tr>
<tr>
<td>Tableau 2</td>
<td>Caractéristiques générales des stations</td>
<td>5</td>
</tr>
<tr>
<td>Tableau 3</td>
<td>Caractéristiques physico-chimiques des sols des stations étudiées</td>
<td>6</td>
</tr>
<tr>
<td>Tableau 4</td>
<td>Plan de fertilisation</td>
<td>8</td>
</tr>
<tr>
<td>Tableau 5</td>
<td>Précipitations hebdomadaires dans les installations fertilisées en 1970</td>
<td>10</td>
</tr>
<tr>
<td>Tableau 6</td>
<td>Effet de la fertilisation et accroissement quinquennal dans les sept sapinières de la Gaspésie</td>
<td>18</td>
</tr>
<tr>
<td>Tableau 7</td>
<td>Test de F (Scheffe). Analyses de variance et de covariance, comparaisons multiples pour les données du volume total (VT).</td>
<td>22</td>
</tr>
<tr>
<td>Tableau 9</td>
<td>Pertes dues à la mortalité exprimée en volume total et marchand avec répartition du nombre d'arbres morts selon la classe d'étage et la classe de diamètre pour l'ensemble des placettes traitées comparées aux témoins dans chaque installation</td>
<td>24</td>
</tr>
<tr>
<td>Tableau 10</td>
<td>Évaluation des dommages causés par la tordeuse des bourgeois de l'épinette en 1975 et en 1976 dans les peuplements de sapins fertilisés en 1969</td>
<td>26</td>
</tr>
<tr>
<td>Tableau 11</td>
<td>Longueurs des aiguilles et nombre d'aiguilles par gramme chez le sapin baumier - Moyenne par traitement</td>
<td>29</td>
</tr>
<tr>
<td>Tableau 13</td>
<td>Teneurs en azote, phosphore et potassium dans les aiguilles de l'année courante du sapin baumier</td>
<td>32</td>
</tr>
<tr>
<td>Tableau 15</td>
<td>Teneurs en azote, phosphore et potassium dans les aiguilles de l'année courante du sapin baumier</td>
<td>35</td>
</tr>
<tr>
<td>Tableau 17</td>
<td>Teneur en azote total et azote ammoniacal des horizons du sol, quatre mois après la fertilisation</td>
<td>40</td>
</tr>
<tr>
<td>Tableau 18</td>
<td>Test de F de l'analyse de variance et test de Duncan. Azote N - total et azote N - ammoniacal des horizons du sol</td>
<td>42</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Localisation des secteurs</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Réaction relative à la fertilisation. Accroissements quinquennaux en volume total des placettes fertilisées, exprimés en pourcentage par rapport à l'accroissement en volume total des placettes témoins</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Accroissements moyens brut (o) et net (●) en volume total, pour les installations combinées durant la période de cinq ans après la fertilisation</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Variation de la longueur des aiguilles (mm) de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Lemieux, 69-06</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Variation du poids (n. d'aiguilles/g) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Lemieux, 69-06</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Variation de la concentration en azote (p. 100) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Lemieux, 69-06</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Variation de la concentration en phosphore (ppm) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Lemieux, 69-06</td>
<td>57</td>
</tr>
</tbody>
</table>
Figure 8 Variation de la concentration en potassium (ppm) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Lemieux, 69-06

Figure 9 Variation de la concentration en azote (p. 100) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Cuoq, 69-01

Figure 10 Variation de la concentration en phosphore (ppm) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Cuoq, 69-01

Figure 11 Variation de la concentration en potassium (ppm) des aiguilles de l'année courante. Tiers supérieur de la cime - Moyenne par traitement. Sapin baumier - Secteur expérimental Cuoq, 69-01

Figure 12 Variation de la concentration en azote total (p. 100) des horizons du sol, 4 mois après fertilisation - Secteur expérimental Lemieux 69-06 (Moyenne et écart type par traitement)

Figure 13 Variation de la concentration en azote total (p. 100) des horizons du sol, 4 mois après fertilisation - Secteur expérimental Chabot 69-07 (Moyenne et écart type par traitement)
INTRODUCTION

La demande globale et régionale des produits forestiers ainsi que les coûts de ces produits augmentent constamment alors que les superficies réservées à la production de matière ligneuse sont de plus en plus restreintes. Cette situation fait ressortir le besoin d'intervenir sur les peuplements naturels et artificiels afin d'augmenter la productivité de ces forêts et de réduire si possible l'âge d'exploitabilité des peuplements.

Parmi les techniques sylvicoles pouvant réduire le déficit réel ou éventuel de bois de certaines régions du Québec, il y a la fertilisation des forêts. On sait déjà que l'utilisation des engrais favorise la croissance des arbres (Armson et al., 1975). Il reste cependant à évaluer biologiquement et économiquement les impacts de la fertilisation forestière en vérifiant systématiquement la réaction des peuplements à des traitements bien définis dans chaque section forestière ayant une importance économique. C'est devant ce besoin apparent que le projet interprovincial de fertilisation des forêts naturelles a vu le jour.

Ce projet a pour but de déterminer les effets possibles des engrais sur l'augmentation du taux de croissance des arbres dans un
peuplement naturel d'une essence, d'une classe d'âge et d'une classe de fertilité données et de déterminer le choix des engrais à utiliser et leur taux d'application.

De plus, des études complémentaires permettent de suivre, après la fertilisation, les variations de longueur et de poids des aiguilles, l'évolution des teneurs en éléments nutritifs du feuillage, les changements en azote total et en azote ammoniacal des sols dans deux dispositifs, l'effet sur la mortalité dans les peuplements et sur l'accroissement des recrus, ainsi que les relations, s'il y en a, avec le développement de la tordeuse des bourgeons de l'épinette.

CHAPITRE I

MATERIEL ET METHODES EXPERIMENTALES

1.1 DESCRIPTION DES STATIONS

En 1969, sept sapinières étaient sélectionnées en vue d'essais de fertilisation manuelle s'inscrivant dans le cadre du Projet interprovin- cial de fertilisation des forêts naturelles. Ces secteurs expérimentaux ont été établis dans les régions de la péninsule gaspésienne, y compris le comté de Kamouraska-Témiscouata.

La localisation des secteurs expérimentaux et les conditions climatiques qui caractérisent les régions concernées sont consignées au tableau 1. D'autres détails particuliers aux peuplements sont présentés aux tableaux 2 et 3.
<table>
<thead>
<tr>
<th>Localisation des secteurs expérimentaux et données climatiques prévalant dans les régions concernées</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>Randon-</td>
</tr>
<tr>
<td>Matane</td>
</tr>
<tr>
<td>Latitude nord</td>
</tr>
<tr>
<td>69°07'</td>
</tr>
<tr>
<td>Temps</td>
</tr>
<tr>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dépôt</td>
<td>Moraine</td>
<td>Moraine</td>
<td>Moraine</td>
<td>Moraine</td>
<td>Moraine</td>
<td>Moraine</td>
<td>Fluvio-glaciaire</td>
</tr>
<tr>
<td>Type de sol</td>
<td>Podzol ferrique</td>
<td>Podzol ferrique</td>
<td>Podzol ferrique</td>
<td>Podzol ferrique orthique</td>
<td>Podzol gleyié</td>
<td>Podzol humo-ferrique</td>
<td>Podzol humo-ferrique orthique</td>
</tr>
<tr>
<td>Drainage (NSSC)</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Type de peuplement</td>
<td>Sapinière</td>
<td>Sapinière</td>
<td>Sapinière</td>
<td>Sapinière</td>
<td>Sapinière</td>
<td>Sapinière</td>
<td>Sapinière</td>
</tr>
<tr>
<td></td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
<td>Hylocomium-Gazia</td>
</tr>
<tr>
<td>Physionomie</td>
<td>Sab: 90,6 p. 100</td>
<td>Epb: 6,9 p. 100</td>
<td>Sab: 86 p. 100</td>
<td>Sab: 72 p. 100</td>
<td>Sab: 91 p. 100</td>
<td>Sab: 98 p. 100</td>
<td>Sab: 89 p. 100</td>
</tr>
<tr>
<td></td>
<td>Ebp: 4,4 p. 100</td>
<td>Bob: 3 p. 100</td>
<td>Ebp: 4,4 p. 100</td>
<td>Ebp: 14 p. 100</td>
<td>Ebp: 7 p. 100</td>
<td>Ebp: 10 p. 100</td>
<td>Ebp: 10 p. 100</td>
</tr>
<tr>
<td></td>
<td>Bob: 2,5 p. 100</td>
<td>Bob: 1 p. 100</td>
<td>Bob: 2,5 p. 100</td>
<td>Bob: 14 p. 100</td>
<td>Bob: 1 p. 100</td>
<td>Bob: 1 p. 100</td>
<td>Bob: 1 p. 100</td>
</tr>
<tr>
<td>d.h.p. moyen</td>
<td>13,2 cm</td>
<td>11,4 cm</td>
<td>13,8 cm</td>
<td>11,0 cm</td>
<td>9,2 cm</td>
<td>11,0 cm</td>
<td>11,1 cm</td>
</tr>
<tr>
<td>Hauteur moy.</td>
<td>13,1 m</td>
<td>13,4 m</td>
<td>13,1 m</td>
<td>12,5 m</td>
<td>11,3 m</td>
<td>13,5 m</td>
<td>14,0 m</td>
</tr>
<tr>
<td>Âge</td>
<td>50 ans</td>
<td>48 ans</td>
<td>60 ans</td>
<td>60 ans</td>
<td>60 ans</td>
<td>60 ans</td>
<td>55 ans</td>
</tr>
<tr>
<td>Indice de fertilité (Linteau)</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>III</td>
<td>III</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>Hauteur à 50 ans</td>
<td>13,1 m</td>
<td>13,7 m</td>
<td>11,6 m</td>
<td>10,4 m</td>
<td>9,1 m</td>
<td>10,7 m</td>
<td>12,2 m</td>
</tr>
<tr>
<td>Origine</td>
<td>Coupe</td>
<td>Coupe</td>
<td>Naturelle</td>
<td>Chablis</td>
<td>Coupe et chablis</td>
<td>Coupe et chablis</td>
<td>Coupe</td>
</tr>
</tbody>
</table>
Tableau 3
CARACTERISTIQUES PHYSICO-CHIMIQUES DES SOLS DES STATIONS ETUDIÉES

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Horizon</th>
<th>N total p. 100</th>
<th>Mat. org. p. 100</th>
<th>C/N</th>
<th>pH</th>
<th>P disp. T. moy. 1 ppm</th>
<th>Cations échangeables (ppm)</th>
<th>Texture (p. 100)</th>
<th>Classe texturale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg</td>
<td>Mn</td>
<td>K</td>
</tr>
<tr>
<td>Coqu, 69-01</td>
<td>H</td>
<td>1,41</td>
<td>68,83</td>
<td>28,3</td>
<td>3,80</td>
<td>272</td>
<td>37</td>
<td>1000</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,08</td>
<td>1,57</td>
<td>11,4</td>
<td>3,75</td>
<td>traces</td>
<td>26</td>
<td>6</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,24</td>
<td>6,27</td>
<td>16,6</td>
<td>6,60</td>
<td>44</td>
<td>30</td>
<td>9</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,14</td>
<td>3,14</td>
<td>13,0</td>
<td>5,00</td>
<td>12</td>
<td>16</td>
<td>traces</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,03</td>
<td>0,29</td>
<td>5,7</td>
<td>5,79</td>
<td>32</td>
<td>17</td>
<td>traces</td>
<td>40</td>
</tr>
<tr>
<td>Rauz, 69-09</td>
<td>H</td>
<td>1,30</td>
<td>78,22</td>
<td>34,9</td>
<td>3,25</td>
<td>132</td>
<td>39</td>
<td>54</td>
<td>825</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,05</td>
<td>1,00</td>
<td>11,6</td>
<td>3,40</td>
<td>traces</td>
<td>22</td>
<td>traces</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,13</td>
<td>3,25</td>
<td>14,5</td>
<td>4,35</td>
<td>42</td>
<td>26</td>
<td>17</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,06</td>
<td>1,93</td>
<td>18,7</td>
<td>5,00</td>
<td>32</td>
<td>17</td>
<td>traces</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,03</td>
<td>0,29</td>
<td>5,7</td>
<td>5,79</td>
<td>32</td>
<td>17</td>
<td>traces</td>
<td>40</td>
</tr>
<tr>
<td>Defour, 69-04</td>
<td>H</td>
<td>1,44</td>
<td>74,97</td>
<td>30,2</td>
<td>3,00</td>
<td>132</td>
<td>70</td>
<td>105</td>
<td>1100</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,08</td>
<td>2,12</td>
<td>15,4</td>
<td>5,00</td>
<td>12</td>
<td>27</td>
<td>traces</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,50</td>
<td>17,24</td>
<td>20,9</td>
<td>6,35</td>
<td>36</td>
<td>30</td>
<td>9</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Bf</td>
<td>0,34</td>
<td>9,38</td>
<td>16,0</td>
<td>6,60</td>
<td>42</td>
<td>21</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,09</td>
<td>1,38</td>
<td>10,2</td>
<td>4,90</td>
<td>4</td>
<td>16</td>
<td>traces</td>
<td>37</td>
</tr>
<tr>
<td>Baldwin, 69-05</td>
<td>H</td>
<td>1,13</td>
<td>75,78</td>
<td>38,9</td>
<td>4,00</td>
<td>138</td>
<td>54</td>
<td>675</td>
<td>1225</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,10</td>
<td>2,65</td>
<td>15,4</td>
<td>5,20</td>
<td>20</td>
<td>12</td>
<td>4</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,04</td>
<td>1,95</td>
<td>28,3</td>
<td>4,95</td>
<td>76</td>
<td>115</td>
<td>6</td>
<td>70</td>
</tr>
<tr>
<td>Lemieux, 69-06</td>
<td>H</td>
<td>1,20</td>
<td>84,61</td>
<td>40,9</td>
<td>4,60</td>
<td>240</td>
<td>1,33</td>
<td>1,50</td>
<td>2,91</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,21</td>
<td>6,38</td>
<td>18,2</td>
<td>7,75</td>
<td>36</td>
<td>0,57</td>
<td>0,13</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,21</td>
<td>3,79</td>
<td>19,1</td>
<td>4,20</td>
<td>6</td>
<td>0,23</td>
<td>traces</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,08</td>
<td>2,28</td>
<td>16,5</td>
<td>7,75</td>
<td>44</td>
<td>0,32</td>
<td>traces</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,08</td>
<td>2,34</td>
<td>17,0</td>
<td>7,50</td>
<td>160</td>
<td>0,38</td>
<td>0,01</td>
<td>0,11</td>
</tr>
<tr>
<td>Chabot, 69-07</td>
<td>H</td>
<td>1,30</td>
<td>67,68</td>
<td>30,2</td>
<td>3,50</td>
<td>170</td>
<td>0,27</td>
<td>0,39</td>
<td>1,60</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0,09</td>
<td>1,15</td>
<td>7,4</td>
<td>4,66</td>
<td>4</td>
<td>0,18</td>
<td>traces</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,24</td>
<td>11,19</td>
<td>19,1</td>
<td>4,20</td>
<td>6</td>
<td>0,23</td>
<td>traces</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,11</td>
<td>3,08</td>
<td>16,3</td>
<td>4,80</td>
<td>2</td>
<td>0,07</td>
<td>traces</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Bfl</td>
<td>0,04</td>
<td>0,35</td>
<td>8,0</td>
<td>1,17</td>
<td>20</td>
<td>0,07</td>
<td>traces</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0,02</td>
<td>0,33</td>
<td>9,0</td>
<td>1,17</td>
<td>160</td>
<td>0,09</td>
<td>traces</td>
<td>0,04</td>
</tr>
</tbody>
</table>

(Translation: The table above contains data on the physico-chemical characteristics of soils from various stations. The data includes information on N, organic matter, pH, exchangeable cations, and texture, along with classes of texture.)
1.2 **DISPOSITIF EXPERIMENTAL**

Chaque installation comprend 2 blocs complets de 6 placettes circulaires de 0,04 ha de superficie; seuls les arbres vivants de 5 cm et plus et contenus dans une sous-placette intérieure circulaire de 0,02 ha furent mesurés et étiquetés. Le diamètre a été mesuré à 0,025 cm près et la hauteur, à 30,5 cm près. Les diamètres des arbres furent remesurés 5 ans après la fertilisation.

Dans deux installations (69-06 et 69-07), quatre placettes additionnelles ont été établies pour permettre l'étude de deux autres traitements.

1.3 **PLAN DE FERTILISATION**

Les traitements de fertilisation ont été assignés au hasard dans chaque bloc. L'azote (N), le phosphore (P) et le potassium (K) sont les éléments qui ont été appliqués selon les formes et les taux présentés au tableau 4.

La fertilisation s'est effectuée dès la fonte de la neige au printemps 1970, à l'aide d'un épandeur manuel de marque *Cyclone*.

Les engrais ont été appliqués uniformément dans chaque placette de 0,04 ha en effectuant deux passages successifs en sens opposé.

1.4 **OBSERVATIONS METEOROLOGIQUES ET PRECIPITATION**

Grâce à la collaboration du Service de météorologie du ministère des Richesses naturelles, nous avons installé un pluviomètre
TABLEAU 4

Plan de fertilisation

<table>
<thead>
<tr>
<th>Traitement par bloc</th>
<th>Type d'engrais</th>
<th>Quantité d'élément</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>N<sub>1</sub></td>
<td>Urée (45 p. 100 d’azote)</td>
<td>100 lb/ac de N (112 kg/ha)</td>
</tr>
<tr>
<td>N<sub>2</sub></td>
<td>Urée (45 p. 100 d’azote)</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
<tr>
<td>N<sub>2</sub>P</td>
<td>Urée (45 p. 100 d’azote)</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
<tr>
<td></td>
<td>Triple superphosphate (45 p. 100 de P<sub>2</sub>O<sub>5</sub>)</td>
<td>100 lb/ac de P (112 kg/ha)</td>
</tr>
<tr>
<td>N<sub>2</sub>K</td>
<td>Urée (45 p. 100 d’azote)</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
<tr>
<td></td>
<td>Muriate de potasse (KCl, 60,5 p. 100 de K<sub>2</sub>O)</td>
<td>100 lb/ac de K (112 kg/ha)</td>
</tr>
<tr>
<td>N<sub>2</sub>PK</td>
<td>Urée (45 p. 100 d’azote)</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
<tr>
<td></td>
<td>Triple superphosphate</td>
<td>100 lb/ac de P (112 kg/ha)</td>
</tr>
<tr>
<td></td>
<td>Muriate de potasse</td>
<td>100 lb/ac de K (112 kg/ha)</td>
</tr>
<tr>
<td>N<sub>1</sub> (1)</td>
<td>Nitrate d’ammonium (NH<sub>4</sub>NO<sub>3</sub>), 34 p. 100 d’azote</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
<tr>
<td>N<sub>s</sub> (1)</td>
<td>Sulfate d’ammonium (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (20,5 p. 100 d’azote)</td>
<td>200 lb/ac de N (224 kg/ha)</td>
</tr>
</tbody>
</table>

(1) Traitements supplémentaires ajoutés dans les installations 69-06 et 69-07. Le dispositif normalisé du Projet interprovincial de fertilisation des forêts naturelles ne comprend que les 6 premiers traitements.
accumulateur aux abords de chaque installation fertilisée en 1970, une dizaine de jours avant la fertilisation.

Les lectures hebdomadaires furent relevées au cours de cinq semaines consécutives. Les données concernant les précipitations durant cette période sont présentées au tableau 5.

Nous avons complété notre information en consultant les données climatologiques journalières des stations météorologiques situées les plus près de nos installations, ce qui nous a permis de constater que, moins de 36 heures après la fertilisation, plus de 2,5 cm de pluie étaient tombés dans les installations 69-05 et 69-06.

1.5 RECOLTE, PREPARATION ET ANALYSE DES TISSUS

Tous les échantillons furent identifiés et conservés en chambre froide à 0°C avant d'être séchés pendant 24 heures à 65°C puis moulu à 20 mailles par un broyeur. Les échantillons ont été analysés au
<table>
<thead>
<tr>
<th>Secteur expérimental</th>
<th>Date de fertilisation</th>
<th>Date d'installation des pluviomètres</th>
<th>Précipitations (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69-01</td>
<td>30/05/70</td>
<td>20/05</td>
<td>3,33 26/05 0,94 02/06 5,16 09/06 1,29 16/06 1,90 23/06</td>
</tr>
<tr>
<td>69-02</td>
<td>29/05/70</td>
<td>19/05</td>
<td>1,65 26/05 0,69 01/06 4,22 08/06 0,53 16/06 0,25 23/06</td>
</tr>
<tr>
<td>69-03</td>
<td>03/06/70</td>
<td>21/05</td>
<td>2,11 28/05 1,60 04/06 1,75 11/06 0,36 18/06 0,30 25/06</td>
</tr>
<tr>
<td>69-04</td>
<td>04/06/70</td>
<td>21/05</td>
<td>2,03 27/05 5,16 03/06 1,22 10/06 0,86 17/06 0,66 24/06</td>
</tr>
<tr>
<td>69-05</td>
<td>01/06/70</td>
<td>20/05</td>
<td>2,23 27/05 2,84 03/06 1,14 10/06 0,69 17/06 0,63 24/06</td>
</tr>
<tr>
<td>69-06</td>
<td>01/06/70</td>
<td>20/05</td>
<td>2,11 27/05 3,45 03/06 1,78 10/06 0,79 17/06 0,63 24/06</td>
</tr>
<tr>
<td>69-07</td>
<td>28/05/70</td>
<td>19/05</td>
<td>0,94 25/05 1,60 01/06 4,29 08/06 3,02 15/06 0,86 22/06</td>
</tr>
</tbody>
</table>

1.6 **MESURES DE LONGUEUR ET DE POIDS DES AIGUILLES**

Des mesures de poids et de longueur furent effectuées sur les échantillons foliaires prélevés à l'automne de 1970, 71, 72 et 73, dans les installations 69-06 et 69-07. Le poids, à 0,1 mg près, de 200 aiguilles et la longueur en millimètres de 25 aiguilles ont été déterminés pour chaque échantillon.

1.7 **ECHANTILLONNAGE DU SOL**

Un échantillonnage du sol fut effectué dans chaque dispositif de fertilisation pour mieux caractériser la station et le type de sol. Les analyses ont été effectuées selon les méthodes utilisées au laboratoire du Service de la recherche (Martin, 1972) et les résultats sont présentés au tableau 2.

Dans les secteurs Lemieux (69-06) et Chabot (69-07), les sols ont été échantillonnés quatre mois après la fertilisation pour analyser leurs teneurs en azote total et en azote ammoniacal. Ces études complémentaires pourraient nous renseigner sur le devenir des différentes formes d'engrais azotés ajoutés au sol en forêt naturelle.

Ces analyses de l'azote sous les formes N total et N ammoniacal ont été réalisées sur des échantillons provenant de 10 profils par placette. Prélevés au moyen d'un emporte-pièce (15,2 cm de diamètre par 15,2 cm de profondeur), les échantillons étaient constitués essentiellement des horizons organiques de surface, de l'horizon Ae (secteur
69-07 seulement) et de la partie supérieure de l'horizon Bfh. Jusqu'au moment de l'analyse, les échantillons ont été conservés séparément dans des sacs de polyéthylène identifiés, à une température de 0°C.

Les échantillons d'humus et de sol minéral ont d'abord été séchés à l'air de la température ambiante, puis tamisés à la fraction < 2 mm. La terre fine a été homogénisée avant d'être conservée dans des contenants de carton paraffiné. L'azote total des échantillons de sol a été dosé par la méthode Kjeldahl tandis que l'azote ammoniacal était analysé selon Bremner et Shaw (1955). L'azote ammoniacal n'a pu être déterminé sur les échantillons provenant du secteur Lemieux (69-06) par suite d'une contamination avant l'analyse.

1.8 OBSERVATIONS SUR LES DOMMAGES CAUSES PAR LA TORDEUSE DES BOURGEONS DE L'ÉPINETTE

Chacune des placettes des installations fertilisées de la Gaspésie a été échantillonnée à l'automne de 1975 et de 1976 pour évaluer les dommages causés par la tordeuse des bourgeons de l'épinette.

Cette évaluation a été faite en prélevant une branche dans la partie supérieure du tiers central de la cime de quatre arbres par placette. On notait alors, pour chacune des branches récoltées, la présence des bourgeons apicaux et la défoliation sur les trois pousses terminales de l'année. Cette méthode d'évaluation est basée sur celle qu'utilise le Service d'entomologie et de pathologie du M.T.F. pour évaluer la protection accordée au sapin baumier par les pulvérisations aériennes contre la tordeuse et qui a été décrite par Doraïs et Hardy (1976).
Le but principal de ces évaluations est de relier la perte éventuelle de vigueur des peuplements affectés par la tordeuse et leur réaction à la fertilisation.

Les résultats des observations sur la tordeuse seront présentés avec les résultats de croissance et pourront être discutés par la suite.

1.9 COMPILATIONS ET ANALYSES STATISTIQUES

Les résultats de croissance ainsi que les analyses statistiques de ces données sont tirés du rapport de Weetman, Krause et Koller (1976). Les données ont fait l'objet d'une analyse de variance et de covariation; par la suite, les résultats ont été soumis au test de Scheffé (1959).

Les résultats des études physiques et des analyses chimiques du feuillage ainsi que les données des analyses de l'azote des sols ont été soumis à des analyses de variance. Par la suite, le test de Duncan ou les comparaisons multiples avec un seul degré de liberté (Steel et Torris, 1960) ont été utilisés pour identifier les traitements significatifs.
CHAPITRE II

RESULTATS ET DISCUSSION

Les résultats de nos différentes études et observations sont présentés en cinq parties: 1) les accroissements en diamètre, en surface terrière et en volumes total et marchand (dans la présentation de ces résultats, on tiendra compte de la mortalité ainsi que de l'augmentation du volume marchand due aux recrues); 2) les observations sur la défoliation par la tordeuse des bourgeons de l'épinette; 3) les variations en longueur et en poids des aiguilles; 4) la concentration en éléments minéraux dans les aiguilles; 5) les contenus en azote total et ammoniacal des sols.

2.1 RESULTATS DE CROISSANCE

2.1.1 Croissance après cinq ans

Les résultats qui concernent le d.h.p., la surface terrière, le volume total et le volume marchand, par traitement et par installation, sont

Les données combinées des installations montrent des accroissements appréciables après la fertilisation. Ces accroissements par rapport au témoin et dus aux traitements de fertilisation, sont de l'ordre de 0,8 à 1,2 m³/ha (18,5 à 27,9 p. 100) en surface terrière et de 5,8 à 8,7 m³/ha (18,4 à 27,7 p. 100) en volume total (figure 2). Ainsi, pour le traitement N₂, le volume total s'est accru de 7,4 m³/ha (24 p. 100) tandis que le phosphore et le potassium ajoutés à N₂ résultent en des accroissements supplémentaires du volume total de 0,8, 1,3 et 1,0 m³/ha respectivement pour les traitements N₂P, N₂K et N₂PK; d'ailleurs, c'est le traitement N₂K qui semble le meilleur en moyenne.

Le test des comparaisons multiples ne montre pas de différence significative entre le traitement N₁ et les traitements N₂, N₂K, N₂P et N₂PK.

Les résultats varient grandement avec chacune des installations; ainsi, les résultats obtenus pour le volume total passent de 2,2 m³/ha à 17,6 m³/ha respectivement pour les installations 7 et 5.

Les meilleures réactions ont été obtenues avec N₂K dans trois installations, avec N₂ dans trois autres et avec N₂P dans la dernière.
Les valeurs de F pour chaque installation varient de 0,67 à 14,09. Il n'y a pas de différence significative de croissance entre les traitements pour les installations 1, 2, 3, 4 et 7.

Les traitements avec le nitrate d'ammonium et le sulfate d'ammonium appliqués dans deux installations (6 et 7) ont donné des résultats comparables à ceux du traitement N_2K. De plus, il n'y a pas de différence significative entre les traitements N_1, N_2, N_n et N_s.

2.1.2 **Accroissement en volume marchand dû aux re crus**

La plupart des peuplements montrent un nombre élevé de re crus qui atteignent les classes de diamètre marchand. Les accroissements en volume marchand dû aux re crus pour la période de 1969 à 1974 sont consignés au tableau 8. En moyenne, les accroissements en volume marchand sont plus élevés pour les traitements de fertilisation. Dans les peuplements où le nombre de tiges est élevé et le d.h.p. faible, on constate que la réaction à la fertilisation au niveau du volume marchand est souvent supérieure à celle du volume total.

2.1.3 **Mortalité**

La mortalité observée varie beaucoup selon les peuplements. Parfois, les pertes en volumes dues à la mortalité sont plus grandes que les gains attribués à la fertilisation (secteurs 1, 2 et 7). Jusqu'à maintenant, il est impossible de faire ressortir un effet consistant des engrais sur la mortalité, parce que dans quelques installations, les placettes traitées montrent une mortalité plus élevée tandis qu'ailleurs, les pertes sont plus grandes dans les placettes témoins. La figure 3
TABLEAU 6

EFFET DE LA FERTILISATION ET ACCROISSEMENT QUINQUENNAL

DANS LES SEPT SAPINIERES DE LA GASPESE

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Paramètres du peuplement</th>
<th>Témoin</th>
<th>Accroissement supplémentaire dG aux traitements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>69-01 Cuq</td>
<td>d.h.p., cm</td>
<td>13,3</td>
<td>13,9</td>
</tr>
<tr>
<td></td>
<td>ST, m2/ha</td>
<td>45,2</td>
<td>49,4</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>310,1</td>
<td>341,7</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>251,7</td>
<td>282,0</td>
</tr>
<tr>
<td>69-02 Horton</td>
<td>d.h.p., cm</td>
<td>12,1</td>
<td>12,6</td>
</tr>
<tr>
<td></td>
<td>ST, m2/ha</td>
<td>40,2</td>
<td>44,1</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>259,2</td>
<td>290,1</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>203,1</td>
<td>233,0</td>
</tr>
<tr>
<td>69-03 Raudin</td>
<td>d.h.p., cm</td>
<td>13,8</td>
<td>14,5</td>
</tr>
<tr>
<td></td>
<td>ST, m2/ha</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>235</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>197</td>
<td>228</td>
</tr>
<tr>
<td>69-04 Dufour</td>
<td>d.h.p., cm</td>
<td>10,9</td>
<td>11,4</td>
</tr>
<tr>
<td></td>
<td>ST, m2/ha</td>
<td>44,5</td>
<td>48,4</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>275,5</td>
<td>301,4</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>200,2</td>
<td>225,6</td>
</tr>
</tbody>
</table>
TABLEAU 6 (suite)

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Paramètres du peuplement</th>
<th>Témoin</th>
<th>Accroissement supplémentaire des traitements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>69-05</td>
<td>d.h.p., cm</td>
<td>8,6</td>
<td>9,1</td>
</tr>
<tr>
<td>Baldwin</td>
<td>ST, m2/ha</td>
<td>40,6</td>
<td>43,7</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>237,4</td>
<td>272,2</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>116,8</td>
<td>152,8</td>
</tr>
<tr>
<td>69-06</td>
<td>d.h.p., cm</td>
<td>9,9</td>
<td>10,4</td>
</tr>
<tr>
<td>Lemieux</td>
<td>ST, m2/ha</td>
<td>40,4</td>
<td>45,2</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>243,4</td>
<td>275,5</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>154,8</td>
<td>187,8</td>
</tr>
<tr>
<td>69-07</td>
<td>d.h.p., cm</td>
<td>10,3</td>
<td>10,9</td>
</tr>
<tr>
<td>Chabot</td>
<td>ST, m2/ha</td>
<td>42,7</td>
<td>47,3</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>261,6</td>
<td>294,3</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>174,0</td>
<td>208,5</td>
</tr>
<tr>
<td>Moyenne</td>
<td>d.h.p., cm</td>
<td>11,3</td>
<td>11,8</td>
</tr>
<tr>
<td></td>
<td>ST, m2/ha</td>
<td>41,5</td>
<td>45,9</td>
</tr>
<tr>
<td></td>
<td>VT, m3/ha</td>
<td>260,3</td>
<td>291,7</td>
</tr>
<tr>
<td></td>
<td>VM, m3/ha</td>
<td>185,4</td>
<td>216,8</td>
</tr>
</tbody>
</table>

1 Paramètres: d.h.p.: diamètre à hauteur de poitrine
ST : surface terrière
VT : volume total
VM : volume marchand

2 N\textsubscript{1} : Traitement supplémentaire avec le nitrate d'ammonium.
3 N\textsubscript{3P} : Traitement supplémentaire avec le sulfate d'ammonium.
Réaction relative à la fertilisation.

Accroissements quinquennaux en volume total des placettes fertilisées, exprimés en pourcentage par rapport à l'accroissement en volume total des placettes témoins.
Accroissements moyens brut (o) et net (●) en volume total, pour les installations combinées durant la période de cinq ans après la fertilisation. La portion noire entre les points représente les pertes dues à la mortalité.
TABLEAU 7

TEST DE F (SCHHEFFE). ANALYSES DE VARIANCE ET DE COVARIANCE, COMPARAISONS MULTIPLES POUR LES DONNÉES DU VOLUME TOTAL (VT)

<table>
<thead>
<tr>
<th>Secteurs</th>
<th>F^1</th>
<th>Traitement par ordre croissant (Volume total)2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapin baumier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69-01</td>
<td>3,45</td>
<td>Témoin N_1 N_2 N_2PK N_2P N_2K</td>
</tr>
<tr>
<td>69-02</td>
<td>2,31</td>
<td>Témoin N_2P N_1 N_2 N_2PK N_2K</td>
</tr>
<tr>
<td>69-03</td>
<td>0,67</td>
<td>Témoin N_2P N_1 N_2PK N_2K N_2</td>
</tr>
<tr>
<td>69-04</td>
<td>2,08</td>
<td>Témoin N_1 N_2PK N_2P N_2K N_2</td>
</tr>
<tr>
<td>69-05</td>
<td>14,09**</td>
<td>Témoin N_2K N_2 N_1 N_2PK N_2P</td>
</tr>
<tr>
<td>69-06</td>
<td>7,72*</td>
<td>Témoin N_2P N_2K N_a N_n N_2PK N_1 N_2</td>
</tr>
<tr>
<td>69-07</td>
<td>1,37</td>
<td>N_2 N_1 N_2PK Témoin N_2P N_2K E_n N_b</td>
</tr>
<tr>
<td>Ensemble des installations</td>
<td>7,66*</td>
<td>Témoin N_1 N_2 N_2PK N_2P N_2K</td>
</tr>
</tbody>
</table>

1. F: La valeur de F obtenue par analyse de covariance est soulignée.

2. : Les traitements reliés par une même ligne ne sont pas significatifs au niveau $P = 0,1$

* significatif à $P = 0,05$

** significatif à $P = 0,01$
<table>
<thead>
<tr>
<th>Secteur</th>
<th>Témoin</th>
<th>N1</th>
<th>N2</th>
<th>N2P</th>
<th>N2K</th>
<th>N2PK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69-01 m³/ha</td>
<td>0,6</td>
<td>3,1</td>
<td>0</td>
<td>1,8</td>
<td>2,4</td>
<td>0</td>
</tr>
<tr>
<td>69-02 m³/ha</td>
<td>1,8</td>
<td>3,6</td>
<td>0,9</td>
<td>3,8</td>
<td>5,3</td>
<td>6,4</td>
</tr>
<tr>
<td>69-03 m³/ha</td>
<td>1,2</td>
<td>0,6</td>
<td>1,3</td>
<td>0,6</td>
<td>1,9</td>
<td>0</td>
</tr>
<tr>
<td>69-04 m³/ha</td>
<td>2,1</td>
<td>3,4</td>
<td>4,1</td>
<td>0,6</td>
<td>6,6</td>
<td>4,5</td>
</tr>
<tr>
<td>69-05 m³/ha</td>
<td>12,2</td>
<td>11,5</td>
<td>12,0</td>
<td>16,6</td>
<td>13,9</td>
<td>15,5</td>
</tr>
<tr>
<td>69-06 m³/ha</td>
<td>5,1</td>
<td>2,2</td>
<td>14,2</td>
<td>3,5</td>
<td>7,1</td>
<td>1,7</td>
</tr>
<tr>
<td>69-07 m³/ha</td>
<td>6,3</td>
<td>5,5</td>
<td>3,2</td>
<td>3,2</td>
<td>5,0</td>
<td>3,5</td>
</tr>
<tr>
<td>MOYENNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m³/ha</td>
<td>4,2</td>
<td>4,3</td>
<td>5,1</td>
<td>4,3</td>
<td>6,0</td>
<td>4,4</td>
</tr>
<tr>
<td>Secteur P.E.P.</td>
<td>Répartition du nombre de tiges/ha selon l’âge</td>
<td>Total</td>
<td>Répartition du nombre de tiges/ha selon le D.H.P.</td>
<td>Vol. total</td>
<td>Vol. marchand moyen</td>
<td>m³/ha</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>D-C-D</td>
<td>I</td>
<td>S</td>
<td>Autres</td>
<td>non-marchandes</td>
<td>marchandes</td>
</tr>
<tr>
<td>69-01 Cocco</td>
<td>0</td>
<td>125</td>
<td>150</td>
<td>225</td>
<td>0</td>
<td>500</td>
</tr>
<tr>
<td>69-02 Témoc</td>
<td>0</td>
<td>155</td>
<td>297</td>
<td>452</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>69-03 Rabin</td>
<td>0</td>
<td>55</td>
<td>235</td>
<td>290</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>69-04 Boiset</td>
<td>0</td>
<td>25</td>
<td>347</td>
<td>372</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>69-05 Balcog</td>
<td>0</td>
<td>25</td>
<td>257</td>
<td>282</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>69-06 Lézeu</td>
<td>0</td>
<td>25</td>
<td>154</td>
<td>179</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>69-07 Chabot</td>
<td>0</td>
<td>10</td>
<td>118</td>
<td>128</td>
<td>0</td>
<td>380</td>
</tr>
<tr>
<td>Moyenne Témoc</td>
<td>4</td>
<td>25</td>
<td>84</td>
<td>130</td>
<td>77</td>
<td>300</td>
</tr>
<tr>
<td>Covra</td>
<td>4</td>
<td>27</td>
<td>99</td>
<td>267</td>
<td>45</td>
<td>450</td>
</tr>
</tbody>
</table>

1. Chênes d’âges: D: dominants; C: co-dominants; I: intermédiaires; S: supprimés; Autres: penchés ou abattus.
2. Pièce de clairière avec des matériaux marchands et non-marchands.
3. Pièce de clairière avec des matériaux non-marchands, H.P. exclus des calculs.
montre les accroissements brut et net en volume total pour l'ensemble des sept installations de sapin, au cours des cinq premières années après la fertilisation. La différence entre les deux accroissements représente la mortalité.

Cependant, le tableau 9 fait ressortir que la majorité des tiges mortes se retrouvent dans les étages intermédiaire et supprimé et que la plupart de ces arbres morts ne sont pas marchands. En moyenne, il semble que la mortalité soit plus élevée chez les tiges supprimées et intermédiaires des placettes traitées. D'ailleurs, pour ces dernières, le taux moyen de mortalité des tiges est de 9,6 pour cent comparativement à 8,5 pour cent dans les témoins. Toutefois, il est impossible de préciser lequel des traitements produit un effet consistant pour accélérer la mortalité de ces tiges pour la plupart non marchandes.

La mortalité qui affecte la majorité des tiges marchandes des étages dominants et co-dominants est attribuable principalement aux arbres renversés ou cassés par le vent, la neige ou la glace. En 1974, la mortalité attribuable à la tordeuse des bourgeons de l'épinette était négligeable, sauf dans l'installation 69-03 (Raudin) où les dommages sont particulièrement élevés dans une des placettes puisque 61,9 pour cent des arbres sont morts. Cette placette d'échantillonnage serait située en plein épicentre d'une épidémie de la tordeuse.
<table>
<thead>
<tr>
<th>Secteur No</th>
<th>Défoliation (p. 100) 1974-1975</th>
<th>Bourgeon (p. 100) 1975-1976</th>
<th>Indice de santé (p. 100) 1975-1976</th>
<th>Perte de vigueur annuelle (p. 100) 1976</th>
</tr>
</thead>
<tbody>
<tr>
<td>69-01</td>
<td>43</td>
<td>97</td>
<td>69</td>
<td>103</td>
</tr>
<tr>
<td>69-02</td>
<td>60</td>
<td>97</td>
<td>100</td>
<td>103</td>
</tr>
<tr>
<td>69-03</td>
<td>95</td>
<td>100</td>
<td>51</td>
<td>** negative</td>
</tr>
<tr>
<td>69-04</td>
<td>91</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>69-05</td>
<td>37</td>
<td>90</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>69-06</td>
<td>27</td>
<td>79</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>** 69-07</td>
<td>65</td>
<td>99</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bourgeois: pourcentage de bourgeois attaqués.
Indice de santé: une valeur 0 indique que le peuplement n'a pas subi de dommages importants.
Perte de vigueur annuelle: une valeur négative indique que la santé du peuplement s'est améliorée.
** Le secteur 69-07 n'a pu être échantillonné en 1976 mais semble presque autant attaqué que l'année précédente.
2.2 **OBSERVATIONS SUR LES DOMMAGES CAUSES PAR LA TORDEUSE**

L'ampleur des dommages varie selon les installations et selon les années d'échantillonnage. Ainsi, les installations 3 et 4 ont été moins attaquées en 1976 qu'en 1974 et 1975, ce qui explique pourquoi ces installations n'ont pas subi de perte de vigueur en 1976 alors que la plupart des autres peuplements ont subi une perte de vigueur importante cette année-là (installations 1, 2 et 6).
D'autre part, les résultats du remesurage quinquennal de 1974 montrent que les traitements de fertilisation n'ont pas affecté significativement la croissance des arbres dans les installations 3, 4 et 7 et que la mortalité dans certaines de ces installations était suffisante pour annuler les gains dus à la fertilisation; il est intéressant de constater que ces installations étaient fortement défoliées par la tordeuse en 1974. Il semble donc que, si les conditions climatiques favorisent encore les attaques de la tordeuse en Gaspésie durant quelques années, il pourrait être décevant de rechercher des effets de la fertilisation sur ces peuplements.

2.3 VARIATION EN LONGUEUR ET POIDS DES AIGUILLES

TABLEAU 11
LONGUEURS DES AIGUILLES ET NOMBRE D'AIGUILLES PAR GRAMME
CHEZ LE SAPIN BAUMIER - MOYENNE PAR TRAITEMENT

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>LEMIEUX 69-06</th>
<th>CHABOT 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>10 13 14 11</td>
<td>10 13 15 10</td>
</tr>
<tr>
<td>N₁</td>
<td>12 17 18 11</td>
<td>11 14 16 11</td>
</tr>
<tr>
<td>N₂</td>
<td>11 17 18 13</td>
<td>10 14 16 11</td>
</tr>
<tr>
<td>N₂P</td>
<td>11 17 18 12</td>
<td>11 15 17 12</td>
</tr>
<tr>
<td>N₂K</td>
<td>11 16 19 12</td>
<td>10 14 16 12</td>
</tr>
<tr>
<td>N₂PK</td>
<td>11 19 18 12</td>
<td>10 15 17 12</td>
</tr>
<tr>
<td>Nₙ</td>
<td>11 17 18 12</td>
<td>10 15 17 12</td>
</tr>
<tr>
<td>Nₛ</td>
<td>11 18 19 13</td>
<td>10 17 17 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRAIT</th>
<th>LEMIEUX 69-06</th>
<th>CHABOT 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>423 274 266 421</td>
<td>451 338 369 494</td>
</tr>
<tr>
<td>Témoin</td>
<td>307 215 199 395</td>
<td>409 266 330 497</td>
</tr>
<tr>
<td>N₁</td>
<td>356 194 181 332</td>
<td>422 273 325 483</td>
</tr>
<tr>
<td>N₂</td>
<td>306 174 171 336</td>
<td>414 221 284 423</td>
</tr>
<tr>
<td>N₂P</td>
<td>305 193 188 332</td>
<td>417 237 301 412</td>
</tr>
<tr>
<td>N₂K</td>
<td>337 171 172 351</td>
<td>417 225 302 491</td>
</tr>
<tr>
<td>N₂PK</td>
<td>329 216 218 412</td>
<td>402 266 327 456</td>
</tr>
<tr>
<td>Nₙ</td>
<td>298 180 164 346</td>
<td>407 236 298 494</td>
</tr>
<tr>
<td>Nₛ</td>
<td>298 180 164 346</td>
<td>407 236 298 494</td>
</tr>
</tbody>
</table>

1 Longueurs moyennes des aiguilles exprimées en mm, 25 aiguilles/arbre.
2 Calculé à partir du poids moyen (en grammes) de 200 aiguilles/arbre.
TABLEAU 12

TEST DE F. ANALYSES DE VARIANCE. COMPARAISONS MULTIPLES. LONGUEURS ET POIDS DES AIGUILLES DE L’ANNEE COURANTE DU SAPIN BAUMIER

Secteurs Lemieux, 69-06 et Chabot, 69-07

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Lemieux, 69-06</th>
<th></th>
<th>Chabot, 69-07</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longueur</td>
<td>Poids</td>
<td>Longueur</td>
<td>Poids</td>
</tr>
<tr>
<td>1. Analyse de variance</td>
<td>NDL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Années</td>
<td>3</td>
<td>146,62**</td>
<td>157,25**</td>
<td>70,02**</td>
</tr>
<tr>
<td>T. Traitements</td>
<td>7</td>
<td>7,66**</td>
<td>11,02**</td>
<td>1,22</td>
</tr>
<tr>
<td>A x T</td>
<td>21</td>
<td>1,44</td>
<td>0,82</td>
<td>0,49</td>
</tr>
<tr>
<td>Répétitions</td>
<td>1</td>
<td>2,67*</td>
<td>1,88</td>
<td>0,13</td>
</tr>
<tr>
<td>2. Comparaisons multiples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.2: 1971 - (1972 + 1973)</td>
<td>29,79**</td>
<td>81,66**</td>
<td>6,96*</td>
<td>81,66**</td>
</tr>
<tr>
<td>A.3: 1972-1973</td>
<td>223,12**</td>
<td>293,87**</td>
<td>113,55**</td>
<td>79,53**</td>
</tr>
<tr>
<td>T.1: Témoins - autres</td>
<td>48,64**</td>
<td>58,88**</td>
<td>4,42*</td>
<td>12,31**</td>
</tr>
<tr>
<td>T.2: N1 - [N2 + N3 + N5]</td>
<td>0,53</td>
<td>0,83</td>
<td>0,85</td>
<td>0,30</td>
</tr>
<tr>
<td>T.3: N2 - [N2P + N2K + N2PK]</td>
<td>0,01</td>
<td>1,17</td>
<td>0,00</td>
<td>2,35</td>
</tr>
<tr>
<td>T.4: N2 - [N3 + N5]</td>
<td>0,08</td>
<td>0,13</td>
<td>0,50</td>
<td>0,69</td>
</tr>
<tr>
<td>T.5: N2PK - N2P + N2K</td>
<td>2,05</td>
<td>0,45</td>
<td>2,12</td>
<td>1,00</td>
</tr>
<tr>
<td>T.6: N2P - N2K</td>
<td>0,07</td>
<td>0,33</td>
<td>0,37</td>
<td>0,08</td>
</tr>
<tr>
<td>T.7: N2-N5</td>
<td>2,21</td>
<td>10,96**</td>
<td>0,12</td>
<td>0,03</td>
</tr>
<tr>
<td>3. Interactions¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1 x T.1</td>
<td>6,01**</td>
<td>1,14</td>
<td>1,19</td>
<td>0,92</td>
</tr>
<tr>
<td>A.1 x T.4</td>
<td>0,00</td>
<td>5,50*</td>
<td>0,19</td>
<td>0,07</td>
</tr>
<tr>
<td>A.2 x T.5</td>
<td>7,87**</td>
<td>0,33</td>
<td>0,93</td>
<td>0,81</td>
</tr>
<tr>
<td>A.3 x T.1</td>
<td>6,81**</td>
<td>0,33</td>
<td>0,05</td>
<td>0,12</td>
</tr>
</tbody>
</table>

* Significatif au seuil de 95 p. 100.
** Significatif au seuil de 99 p. 100.
¹ Seules les interactions significatives sont inscrites au présent tableau.
2.3.1 **Secteur Lemieux, 69-06**

Dans ce secteur, l'analyse de variance et les comparaisons multiples démontrent que pour les aiguilles d'un an, l'effet significatif des engrais sur les caractéristiques foliaires est perceptible à partir de la deuxième année (1971) suivant la fertilisation. En 1971 et 1972, il n'existe pas de différence entre les traitements de fertilisation; par la suite, l'effet sur la longueur semble à peu près disparu en 1973 tandis que le poids unitaire des aiguilles est encore affecté par les traitements N_2, N_2P, N_2K, N_2PK et N_s (figure 3).

2.3.2 **Secteur Chabot, 69-07**

L'influence de la fertilisation sur la longueur des aiguilles de l'année courante du sapin dans le secteur Chabot n'est pratiquement pas décelable à cause des variations annuelles démontrées par le témoin. Par contre, le poids foliaire unitaire augmente à partir de 1971 et la différence est significative entre le témoin et les parcelles fertilisées. L'effet disparaît à partir de la quatrième année (1973) dans le cas des longueurs d'aiguilles pendant que les traitements affectent encore le poids des aiguilles.

Pour ces deux secteurs, l'effet des engrais se traduit par des augmentations de la longueur et du poids des aiguilles. Toutefois, ces changements sont plus importants dans le secteur Lemieux, 69-06.

2.4 **ANALYSES CHIMIQUES DES AIGUILLES**

Les résultats annuels moyens des analyses chimiques du feuillage de l'année courante sont présentées au tableau 13 pour les secteurs
<table>
<thead>
<tr>
<th>Trait.</th>
<th>Azote total (p. 100)</th>
<th>Phosphore total (ppm)</th>
<th>Potassium total (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>1,13 1,26 1,24 1,31 0,97</td>
<td>1846 1602 1495 2050 1840</td>
<td>6239 4515 4616 6628 6271</td>
</tr>
<tr>
<td>N₁</td>
<td>1,16 1,51 1,44 1,45 1,16</td>
<td>1979 1581 1615 1971 1806</td>
<td>6606 4339 4533 5996 5704</td>
</tr>
<tr>
<td>N₂</td>
<td>1,19 1,75 1,62 1,55 1,31</td>
<td>1954 1652 1592 1963 1715</td>
<td>6041 4370 4359 5694 5512</td>
</tr>
<tr>
<td>N₂P</td>
<td>1,13 1,86 1,60 1,56 1,14</td>
<td>1818 1874 1626 2136 1878</td>
<td>5883 4255 3675 5301 5033</td>
</tr>
<tr>
<td>N₂K</td>
<td>1,12 1,67 1,54 1,50 1,16</td>
<td>1871 1527 1309 1817 1842</td>
<td>5946 4687 4766 6360 6337</td>
</tr>
<tr>
<td>N₂PK</td>
<td>1,19 1,81 1,59 1,49 1,24</td>
<td>1931 1839 1752 2252 2133</td>
<td>6393 4833 4954 6658 6133</td>
</tr>
<tr>
<td>Nₙ</td>
<td>1,21 1,88 1,63 1,53 1,25</td>
<td>1808 1594 1357 1921 1692</td>
<td>5935 4331 4147 5673 5437</td>
</tr>
<tr>
<td>Nₙₛ</td>
<td>1,21 2,03 1,43 1,61 1,28</td>
<td>1735 1679 1308 1840 1478</td>
<td>6316 5057 4412 5923 5242</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Témoin</td>
<td>1,17 1,40 1,32 1,24 1,18</td>
<td>1708 1638 1535 1480 1702</td>
<td>6271 4361 4448 4740 4846</td>
</tr>
<tr>
<td>N₁</td>
<td>1,22 1,76 1,55 1,40 1,28</td>
<td>1587 1611 1454 1326 1537</td>
<td>5710 4846 4780 5326 5350</td>
</tr>
<tr>
<td>N₂</td>
<td>1,20 1,83 1,60 1,44 1,26</td>
<td>1666 1699 1656 1401 1672</td>
<td>6475 4754 4564 5307 5004</td>
</tr>
<tr>
<td>N₂P</td>
<td>1,15 2,00 1,62 1,43 1,18</td>
<td>1821 1964 1858 1876 1929</td>
<td>6245 4734 4956 5494 5298</td>
</tr>
<tr>
<td>N₂K</td>
<td>1,14 1,76 1,66 1,41 1,21</td>
<td>1837 1719 1569 1373 1499</td>
<td>5850 4245 5393 6086 5916</td>
</tr>
<tr>
<td>N₂PK</td>
<td>1,11 1,76 1,62 1,39 1,16</td>
<td>1745 1719 1707 1760 1795</td>
<td>6106 5049 5309 6118 6225</td>
</tr>
<tr>
<td>Nₙ</td>
<td>1,23 2,04 1,81 1,58 1,24</td>
<td>1679 1756 1722 1627 1576</td>
<td>5862 4537 4975 6246 4812</td>
</tr>
<tr>
<td>Nₙₛ</td>
<td>1,17 2,42 1,63 1,51 1,18</td>
<td>1731 1696 1645 1543 1481</td>
<td>6493 4080 4854 5057 4704</td>
</tr>
</tbody>
</table>
Lemieux et Chabot et au tableau 15 pour les secteurs Cuoq (69-01) et Horton (69-02). Les résultats de ces deux derniers secteurs ont été insérés ici principalement pour montrer les valeurs de l'analyse foliaire réalisée sur les aiguilles récoltées en 1974, soit 5 ans après la fertilisation, ces secteurs étant moins affectés par l'épidémie de la tordeuse des bourgeons d'épinette.

Les données d'analyses incluses dans ce rapport portent strictement sur les éléments appliqués: l'azote, le phosphore et le potassium. D'ailleurs, nous avions déjà rapporté que les concentrations en calcium, magnésium et manganèse des aiguilles ne semblaient pas influencées par les traitements de fertilisation (Veilleux, 1975).

Aux figures 7 à 12 inclusivement sont exprimées les variations des moyennes, par année et par traitement, des concentrations en azote, phosphore et potassium, des aiguilles de l'année courante, pour les secteurs Lemieux (69-06) et Cuoq (69-01). Ces figures permettent de visualiser les variations annuelles de chaque élément à la suite de la fertilisation.

Afin de préciser les variations, si variations il y a, les tableaux 14 et 16 reproduisent les valeurs de F de l'analyse de variance et des comparaisons multiples pour chacun des éléments analysés.

2.4.1 Secteur Lemieux, 69-06

Dans ce secteur, l'augmentation de la concentration en azote des aiguilles de l'année courante des parcelles traitées est très marquée dès l'automne qui suit la fertilisation. Ainsi, en 1969, la teneur en azote de toutes les placettes qui s'établissait entre 1,12 et 1,21 p.
TABLEAU 14

Test de "F". Analyse de variance. Comparaisons multiples.
Analyse chimique des aiguilles de l'année courante du sapin baumier.
Secteurs Lemieux, 69-06 et Chabot, 69-07

<table>
<thead>
<tr>
<th>Composantes</th>
<th>Azote</th>
<th>Phosphore</th>
<th>Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Années</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Traitements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A X T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Répétitions</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Analyse de variance

<table>
<thead>
<tr>
<th></th>
<th>Lemieux, 69-06</th>
<th>Chabot, 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Années</td>
<td>62,58**</td>
<td>120,90**</td>
</tr>
<tr>
<td>T. Traitements</td>
<td>8,56**</td>
<td>8,95**</td>
</tr>
<tr>
<td>A X T</td>
<td>1,27</td>
<td>2,80**</td>
</tr>
<tr>
<td>Répétitions</td>
<td>2,39</td>
<td>1,03</td>
</tr>
</tbody>
</table>

2. Comparaisons multiples

<table>
<thead>
<tr>
<th></th>
<th>Lemieux, 69-06</th>
<th>Chabot, 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3 1971 - (1972 + 1973)</td>
<td>21,05**</td>
<td>72,90**</td>
</tr>
<tr>
<td>A.4 1972 - 1973</td>
<td>54,50**</td>
<td>72,90**</td>
</tr>
<tr>
<td>T.1 Témoins - autres traitements</td>
<td>44,71**</td>
<td>31,69**</td>
</tr>
<tr>
<td>T.2 N1 - (N2 + Mn + Na)</td>
<td>12,67**</td>
<td>39,21**</td>
</tr>
<tr>
<td>T.3 N2 - (N2P + N2K + N2PK)</td>
<td>1,02</td>
<td>7,17**</td>
</tr>
<tr>
<td>T.4 N2 - (N2 + Mn)</td>
<td>0,74</td>
<td>21,17**</td>
</tr>
<tr>
<td>T.5 N2PK - (N2P + N2K)</td>
<td>0,61</td>
<td>7,21**</td>
</tr>
<tr>
<td>T.6 N2P - N2K</td>
<td>1,18</td>
<td>21,21**</td>
</tr>
<tr>
<td>T.7 N - N</td>
<td>0,03</td>
<td>8,04</td>
</tr>
</tbody>
</table>

3. Intéractions

<table>
<thead>
<tr>
<th></th>
<th>Lemieux, 69-06</th>
<th>Chabot, 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1 X T.1</td>
<td>7,71**</td>
<td>9,20**</td>
</tr>
<tr>
<td>A.1 X T.2</td>
<td>1,74</td>
<td>2,42</td>
</tr>
<tr>
<td>A.1 X T.3</td>
<td>0,00</td>
<td>0,44</td>
</tr>
<tr>
<td>A.1 X T.6</td>
<td>0,16</td>
<td>0,08</td>
</tr>
<tr>
<td>A.1 X T.7</td>
<td>0,02</td>
<td>0,25</td>
</tr>
<tr>
<td>A.2 X T.1</td>
<td>6,44*</td>
<td>15,25**</td>
</tr>
<tr>
<td>A.2 X T.2</td>
<td>5,33*</td>
<td>7,16**</td>
</tr>
<tr>
<td>A.2 X T.3</td>
<td>0,83</td>
<td>0,38</td>
</tr>
<tr>
<td>A.2 X T.4</td>
<td>4,28*</td>
<td>10,26**</td>
</tr>
<tr>
<td>A.2 X T.6</td>
<td>1,27</td>
<td>14,80**</td>
</tr>
<tr>
<td>A.2 X T.7</td>
<td>1,65</td>
<td>1,98</td>
</tr>
<tr>
<td>A.4 X T.4</td>
<td>0,18</td>
<td>0,38</td>
</tr>
</tbody>
</table>

* Significatif au seuil de 95 p. 100
** Significatif au seuil de 99 p. 100

1 Seules les interactions significatives sont inscrites au présent tableau.
<table>
<thead>
<tr>
<th>Traitement</th>
<th>Azote total (p. 100)</th>
<th>Phosphore total (ppm)</th>
<th>Potassium total (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Témoin</td>
<td>1,28</td>
<td>1,36</td>
<td>1850</td>
</tr>
<tr>
<td>N1</td>
<td>1,26</td>
<td>1,48</td>
<td>1971</td>
</tr>
<tr>
<td>N2</td>
<td>1,20</td>
<td>1,69</td>
<td>1873</td>
</tr>
<tr>
<td>N2P</td>
<td>1,30</td>
<td>1,72</td>
<td>1752</td>
</tr>
<tr>
<td>N2K</td>
<td>1,30</td>
<td>1,42</td>
<td>1460</td>
</tr>
<tr>
<td>N2PK</td>
<td>1,35</td>
<td>1,65</td>
<td>1721</td>
</tr>
<tr>
<td>Témoin</td>
<td>1,20</td>
<td>1,29</td>
<td>1993</td>
</tr>
<tr>
<td>N1</td>
<td>1,24</td>
<td>1,68</td>
<td>1848</td>
</tr>
<tr>
<td>N2</td>
<td>1,25</td>
<td>1,77</td>
<td>1787</td>
</tr>
<tr>
<td>N2P</td>
<td>1,28</td>
<td>1,75</td>
<td>1754</td>
</tr>
<tr>
<td>N2K</td>
<td>1,16</td>
<td>1,75</td>
<td>1862</td>
</tr>
<tr>
<td>N2PK</td>
<td>1,16</td>
<td>1,75</td>
<td>1862</td>
</tr>
</tbody>
</table>

Teneurs en azote, phosphore et potassium dans les aiguilles de l'année courante du sapin baumier.
<table>
<thead>
<tr>
<th>Composantes</th>
<th>Cuq, 69-01</th>
<th></th>
<th></th>
<th>Hort, 69-02</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Azote</td>
<td>Phosphore</td>
<td>Potassium</td>
<td>Azote</td>
<td>Phosphore</td>
<td>Potassium</td>
</tr>
<tr>
<td>1. Analyse de variance</td>
<td>NDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Années</td>
<td>2</td>
<td>58,51**</td>
<td>16,57**</td>
<td>74,00**</td>
<td>25,62**</td>
<td>28,79**</td>
</tr>
<tr>
<td>T. Traitements</td>
<td>5</td>
<td>3,58**</td>
<td>3,07*</td>
<td>1,21</td>
<td>7,82**</td>
<td>1,58</td>
</tr>
<tr>
<td>A X T</td>
<td>10</td>
<td>4,13**</td>
<td>1,33</td>
<td>0,52</td>
<td>3,21*</td>
<td>0,49</td>
</tr>
<tr>
<td>Répétitions</td>
<td>1</td>
<td>0,64</td>
<td>4,28</td>
<td>2,20</td>
<td>5,17*</td>
<td>1,15</td>
</tr>
<tr>
<td>2. Comparaisons multiples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1 1969 - (1970 + 1974)</td>
<td>41,05**</td>
<td>3,96</td>
<td>73,32**</td>
<td>90,40**</td>
<td>19,55**</td>
<td>56,05**</td>
</tr>
<tr>
<td>A.2 1970 - 1974</td>
<td>75,93**</td>
<td>29,18**</td>
<td>0,86</td>
<td>57,62**</td>
<td>31,70**</td>
<td>1,54</td>
</tr>
<tr>
<td>T.1 Témoin - autres traitements</td>
<td>9,76**</td>
<td>0,04</td>
<td>0,63</td>
<td>11,53**</td>
<td>1,38</td>
<td>0,09</td>
</tr>
<tr>
<td>T.2 N₁ - N₂</td>
<td>2,84</td>
<td>3,65</td>
<td>0,45</td>
<td>8,18*</td>
<td>4,07</td>
<td>0,68</td>
</tr>
<tr>
<td>T.3 N₂ - (N₂P + N₂K + N₂PK)</td>
<td>0,43</td>
<td>13,17**</td>
<td>4,02</td>
<td>1,00</td>
<td>3,03</td>
<td>1,53</td>
</tr>
<tr>
<td>T.4 N₂PK - (N₂P + N₂K)</td>
<td>0,64</td>
<td>0,37</td>
<td>0,44</td>
<td>0,15</td>
<td>0,56</td>
<td>6,12*</td>
</tr>
<tr>
<td>T.5 N₂P - N₂K</td>
<td>0,07</td>
<td>1,60</td>
<td>0,46</td>
<td>7,15*</td>
<td>1,51</td>
<td>0,02</td>
</tr>
<tr>
<td>3. Interactions¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1 X T.1</td>
<td>5,06*</td>
<td>1,22</td>
<td>0,04</td>
<td>6,47*</td>
<td>0,04</td>
<td>0,37</td>
</tr>
<tr>
<td>A.1 X T.2</td>
<td>4,60*</td>
<td>4,26</td>
<td>2,89</td>
<td>0,08</td>
<td>0,06</td>
<td>0,02</td>
</tr>
<tr>
<td>A.2 X T.1</td>
<td>24,63**</td>
<td>1,07</td>
<td>1,08</td>
<td>15,67**</td>
<td>0,52</td>
<td>0,25</td>
</tr>
</tbody>
</table>

* Significatif au seuil de 95 p. 100
** Significatif au seuil de 99 p. 100
¹ Seules les interactions significatives sont inscrites au présent tableau.
100, variait de 1,51 à 2,03 p. 100 pour les placettes utilisées en 1970, comparativement à 1,26 p. 100 pour le témoin. L'écart, bien que moins élevé, se maintient toujours au cours des deux années subséquentes tandis que l'effet est à peu près disparu après quatre ans. D'après l'analyse de variance, il n'existe aucune différence entre les parcelles en 1969, tandis que pour les trois années après la fertilisation, les teneurs en azote des aiguilles des placettes traitées sont significativement plus élevées que celles du témoin, indépendamment de la quantité d'azote ajoutée au sol. L'effet tend à disparaître à partir de la quatrième année après la fertilisation.

L'augmentation du potassium foliaire dans les placettes fertilisées avec le KCl est moins bien marquée que pour les deux éléments précédemment étudiés, et l'effet semble plus lent. Ce n'est qu'à partir de 1971 que les teneurs en potassium des aiguilles des traitements N₂K et N₂PK montrent une différence significative et seulement avec celle du traitement N₂P. Il semble que les conditions d'azote et surtout du phosphore interfèrent avec l'absorption du potassium.
2.4.2 Secteur Chabot, 69-07

L'augmentation de la teneur en azote du feuillage de première année est particulièrement marquée dès l'automne qui suit la fertilisation. Avant le traitement, la teneur en azote varie de 1,11 à 1,23 p. 100; en 1970, la teneur en azote du témoin est de 1,40 p. 100, en comparaison avec 1,76 à 2,42 p. 100 dans les placettes fertilisées. Ces écarts décroissent au cours des années qui suivent et les différences ne sont plus perceptibles en 1973.

L'analyse de variance présentée au tableau 15 démontre que les concentrations en azote des aiguilles de l'année courante dans toutes les placettes en 1969 ne diffèrent pas significativement. Toutefois, après la fertilisation, les teneurs en azote des placettes traitées sont significativement différentes de celle du témoin, indépendamment de la quantité d'azote ajoutée au sol. De plus, en 1970, la concentration maximum de 2,42 p. 100 d'azote obtenue avec le traitement N₈ est significativement plus élevée que celle des autres placettes fertilisées tandis qu'en 1971, c'est le nitrate d'ammonium (N₈) qui fournit la valeur la plus élevée en N foliaire. En 1972, il n'existe plus de différence entre les placettes fertilisées.

L'augmentation de la teneur en phosphore des aiguilles est significative en 1970 et 1971 pour le traitement N₂P. Les années suivantes, les placettes traitées avec N₂P et N₂PK accusent les concentrations foliaires les plus élevées et les plus significatives tandis que les autres traitements semblent nuire à l'absorption du phosphore.
L'effet du potassium ajouté au sol est lent et les variations sont plus difficiles à déceler, surtout parce que cet élément enregistre des variations annuelles importantes. Des concentrations en potassium légèrement supérieures et significatives sont observées dans les aiguilles des parcelles traitées avec N₂K et N₂PK à partir de 1971.

2.4.3 Secteurs Cuoq (69-01) et Horton (69-02)

Le phosphore foliaire dosé en 1970 pour les traitements N₂P et N₂PK, est significativement plus élevé tandis qu'en 1974, la différence est encore décelable mais non significative.

2.5 AZOTE TOTAL ET AZOTE AMMONIACAL DES HORIZONS DU SOL

Le tableau 17 présente les résultats des analyses de l'azote total pour les deux secteurs étudiés et ceux de l'azote ammoniacal du secteur Chabot. Les échantillons du secteur expérimental Lemieux n'ont pu être dosés pour l'azote ammoniacal à cause d'une contamination avant l'analyse. Il est à noter que pour ce secteur, l'horizon Ae n'étant qu'à
TABLEAU 17

TENUE EN AZOTE TOTAL ET AZOTE AMMONIACAL DES HORIZONS DU SOL, QUATRE MOIS APRES LA FERTILISATION

<table>
<thead>
<tr>
<th>Traitement</th>
<th>Horizon</th>
<th>N total (p. 100)</th>
<th>N ammoniacal¹ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lemieux 69-06</td>
<td>Chabot 69-07</td>
</tr>
<tr>
<td>Témoin</td>
<td>F</td>
<td>1.28</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.35</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.32</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>N₁</td>
<td>F</td>
<td>1.46</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.43</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>N₂</td>
<td>F</td>
<td>1.44</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.37</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>N₂P</td>
<td>F</td>
<td>1.32</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.38</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.38</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.21</td>
</tr>
<tr>
<td>N₂K</td>
<td>F</td>
<td>1.24</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.33</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.43</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>N₂PK</td>
<td>F</td>
<td>1.34</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.41</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.32</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>Nₙ</td>
<td>F</td>
<td>1.54</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.37</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.53</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Nₛ</td>
<td>F</td>
<td>1.45</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>Ae</td>
<td>0.55</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Bfh</td>
<td></td>
<td>0.23</td>
</tr>
</tbody>
</table>

¹ L'azote ammoniacal n'a pu être dosé dans les échantillons de sol du secteur Lemieux, 69-06.
l'état de traces, a été mélangé avec le Bfh.

Les valeurs de F de l'analyse de variance et les résultats du test de Duncan pour les horizons dans lesquels on obtient un F significatif (analyse de variance) sont présentés au tableau 18.

2.5.1 Azote total, secteur Lemieux

Les variations de la concentration en azote total de chacun des horizons du sol sont exprimées à la figure 13. L'analyse de variance ne décelle pas d'effet significatif dû à la fertilisation, même si les résultats permettent de constater que les concentrations sont légèrement plus élevées dans les placettes fertilisées, pour l'horizon F. La couche H ne présente pas de telles variations tandis qu'en Ae + Bfh, les traitements Nₙ et Nₛ donnent des valeurs supérieures aux autres traitements, laissant supposer que le nitrate d'ammonium et le sulfate d'ammonium sont entraînés plus rapidement dans les couches profondes.

2.5.2 Azote total, secteur Chabot

L'analyse de variance montre une différence significative au niveau de l'horizon F, due au traitement avec le sulfate d'ammonium (Nₛ) qui donne la concentration d'azote total la plus élevée avec 1,71 p. 100. Les trois autres horizons analysés (H, Ae et Bfh) ne présentent pas de variation significative. Des précipitations plus faibles notées dans ce secteur de même que des capacités différentes de rétention de l'azote au niveau des sols pourraient expliquer les écarts obtenus entre les dosages pour les deux secteurs.
TABLEAU 18

Test de "F" de l’analyse de variance et test de Duncan azote N - total et azote N - ammoniacal des horizons du sol

1. Analyse de variance

<table>
<thead>
<tr>
<th>Secteurs</th>
<th>Lemieux, 69-06</th>
<th>Chabot, 69-07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizons du sol</td>
<td>F H Ae + Bfh</td>
<td>F H Ae Bfh</td>
</tr>
<tr>
<td>N total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitements 7</td>
<td>0,80 0,29 3,73</td>
<td>7,58** 1,30 0,91 1,11</td>
</tr>
<tr>
<td>Répétitions 1</td>
<td>0,69 0,05 0,10</td>
<td>0,13 2,85 1,30 5,16**</td>
</tr>
<tr>
<td>N ammoniacal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitements 7</td>
<td>aucun résultat</td>
<td>5,19* 5,49* 0,72 0,88</td>
</tr>
<tr>
<td>Répétitions 1</td>
<td>1,61 6,85* 0,52 2,32</td>
<td></td>
</tr>
</tbody>
</table>

* Significative au seuil de 95 p. 100
** Significative au seuil de 95 p. 100

2. Test de Duncan (95 p. 100)¹

a) 69-07, Azote total, horizon F

<table>
<thead>
<tr>
<th>N2P</th>
<th>N1</th>
<th>N2PK</th>
<th>N2</th>
<th>T</th>
<th>N2K</th>
<th>Nn</th>
<th>Ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,44</td>
<td>1,48</td>
<td>1,53</td>
<td>1,56</td>
<td>1,58</td>
<td>1,58</td>
<td>1,59</td>
<td>1,71</td>
</tr>
</tbody>
</table>

b) 69-07, Azote ammoniacal, horizon F

<table>
<thead>
<tr>
<th>T</th>
<th>N1</th>
<th>Nn</th>
<th>Ns</th>
<th>N2PK</th>
<th>N2P</th>
<th>N2K</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>687</td>
<td>812</td>
<td>863</td>
<td>873</td>
<td>1082</td>
<td>1151</td>
<td>1972</td>
</tr>
</tbody>
</table>

c) 69-07, Azote ammoniacal, horizon H

<table>
<thead>
<tr>
<th>N1</th>
<th>T</th>
<th>Ns</th>
<th>Nn</th>
<th>N2K</th>
<th>N2P</th>
<th>N2</th>
<th>N2PK</th>
</tr>
</thead>
<tbody>
<tr>
<td>344</td>
<td>396</td>
<td>555</td>
<td>631</td>
<td>762</td>
<td>921</td>
<td>928</td>
<td>1035</td>
</tr>
</tbody>
</table>

¹ Les traitements reliés par la ligne pointillée ne sont pas significativement différents.
2.5.3 Azote ammoniacal, secteur Chabot

2.5.4 Comparaison des deux secteurs

Les données ne permettent pas d'évaluer s'il y avait des variations entre les placettes de chaque secteur, avant la fertilisation; ceci complique davantage l'interprétation des résultats. Selon le tableau 3, certaines différences existeraient entre les propriétés physico-chimiques des sols des secteurs expérimentaux Lemieux et Chabot, particulièrement au niveau de la couche humifère où les teneurs en humus, en matière organique, le rapport C/N et le pH diffèrent; dans l'horizon C, la texture est nettement plus sableuse dans le secteur Chabot. A cause de ces différences, il est possible que les capacités de rétention de l'azote soient différentes au niveau des sols.

A l'instar des résultats publiés par Phu et Gagnon (1972), le contenu en azote total augmente dans l'humus F et ce phénomène est plus facilement perceptible dans le secteur Lemieux, même si les différences ne sont pas significatives. D'ailleurs, Roberge (1975) mentionne qu'une grande quantité d'azote total déjà présente avant la fertilisation fait que l'addition d'azote sous forme d'urée est difficile à déceler par l'analyse de l'azote total. Les concentrations d'azote total déterminées dans les secteurs Lemieux et Chabot ne sont pas très éloignées de...

Par contre, l'azote sous forme d'ammonium n'ayant pas été dosé dans les sols de Lemieux, la comparaison est impossible à ce niveau avec le secteur Chabot. A ce dernier endroit, dans l'humus F et H, l'azote sous forme ammonium est beaucoup plus élevé dans les placettes fertilisées que dans le témoin. A dose égale, ces concentrations sont plus faibles dans les sols fertilisés avec le nitrate d'ammonium (N_n) et le sulfate d'ammonium (N_s), à cause de la différence de mobilité entre les formes d'azote ajouté au sol. Ceci confirme (Roberge, 1971) que l'urée offre des avantages marqués sur tous les autres engrais azotés connus pour la fertilisation des sols des sapinières québécoises. Les quantités d'azote ammoniacal récupérées pour les traitements N_2P, N_2K et N_2PK, témoignent d'un lessivage plus accentué de l'urée lorsque celle-ci est ajoutée conjointement avec P et K, tel que signalé par Carrier et Bernier (1971).

Ainsi, les résultats d'analyses indiquent que des quantités substantielles d'azote ont été immobilisées dans les couches F et H, ce qui permet d'affirmer, à l'instar de Gagnon, Conway et Swan (1975), que la fertilité de l'horizon de surface du sol est plus élevée là où les engrais azotés (particulièrement l'urée) ont été appliqués et que la croissance des arbres devrait y être meilleure.
CONCLUSION

Le présent travail avait pour but de suivre après la fertilisation, les changements de quelques caractéristiques de sept stations représentatives de la sapinière à bouleau blanc, situées dans la péninsule gaspésienne. Ainsi, l’incidence de la fertilisation a été étudiée en fonction de la croissance des arbres, de la défoliation par la tordeuse des bourgeons de l’épinette, des variations annuelles dans les dimensions des aiguilles, de l’évolution des teneurs en éléments nutritifs du feuillage et enfin, des changements de concentration en azote total et en azote ammoniacal des sols, quatre mois après fertilisation.

La fertilisation a causé des gains modérés de croissance, après cinq ans, avec des accroissements supplémentaires en volume total dus aux traitements qui s’échelonnent en moyenne entre 5,8 et 8,7 m3/ha, soit de 20 à 30 p. 100 d’augmentation. L’azote a été l’élément le plus efficace, ce qui confirme l’hypothèse d’une faible disponibilité de cet élément dans nos forêts. Bien que les gains maximums aient été obtenus à la suite des traitements combinés N$_2$P, N$_2$K et N$_2$PK, les effets apparents du P et du K ne sont pas confirmés par les tests de comparaisons multiples.

Les résultats de croissance varient beaucoup d’une installation à l’autre et seules les installations 5 et 6 présentent des différen-
ces significatives de croissance dues aux traitements appliqués.

Durant la période de 1969 à 1974, un nombre élevé de regrus ont atteint les classes de diamètre marchand et causé des accroissements en volume marchand de l'ordre de 4,2 m³/ha à 6,0 m³/ha respectivement pour le témoin et le traitement N₂K.

D'autre part, les pertes moyennes en volume total dues à la mortalité durant les cinq ans, sont de l'ordre de 11,2 m³/ha dont 5,1 m³/ha en volume marchand. Cependant, la mortalité observée varie beaucoup selon les peuplements. Parfois, les pertes en volumes dues à la mortalité sont plus grandes que les gains attribués à la fertilisation (installations 1, 2 et 7). Il semble que la majorité des tiges mortes se retrouve dans les étages intermédiaire et supprimé et que la plupart de ces arbres ne sont pas marchands. De plus, la mortalité de ces tiges serait plus élevée dans les placettes traitées. Toutefois, il est impossible, jusqu'à maintenant, de faire ressortir un effet consistant des engrais sur la mortalité.

Des dommages attribuables à la tordeuse des bourgeons de l'épinette ont été observés depuis 1974 et peu de mortalité est due à l'insecte, sauf dans un des peuplements (69-03) qui s'est retrouvé en plein épicentre d'une épidémie. Ces dommages qui affectent la croissance et la vitalité du sapin, peuvent atténuer la réaction à la fertilisation. Advenant que l'épidémie de la tordeuse se poursuive ou s'aggrave, il deviendra presque impossible de déceler les accroissements supplémentaires dus aux engrais, lors du remesurage décennal.
A la lumière de ces résultats sur la croissance et en supposant que la réaction au traitement se continuera encore pendant quelques années et que l'épidémie de la tordeuse soit en régression, on pourrait préconiser un traitement de 200 à 225 kg/ha d'azote sous forme d'urée (450 à 500 kg/ha d'urée), dans des sapinières de bonne venue âgées de 30 à 50 ans, croissant en Gaspésie, particulièrement celles situées à proximité des usines. Dans certains peuplements où la mortalité en volume marchand est élevée, la fertilisation devrait être combinée avec l'éclaircie.

Par ailleurs, tous les traitements de fertilisation ont favorisé l'augmentation de la longueur et du poids des aiguilles de l'année courante dans les stations étudiées. Toutefois, les réactions varient selon les peuplements. L'analyse chimique des aiguilles de l'année fait ressortir que les concentrations foliaires des éléments ajoutés aux sols varient dans le même sens après la fertilisation et que les variations de la teneur en azote sont particulièrement fortes dès l'automne qui suit l'application des engrais. L'azote fourni par le sulfate d'ammonium et le nitrate d'ammonium est absorbé plus rapidement que l'azote fourni sous forme d'urée. L'effet des traitements azotés sur la teneur en azote foliaire n'est pratiquement plus décelable après 5 ans, de même que celui du potassium, tandis que celui du phosphore est encore perceptible mais non significatif. La fertilisation azotée semble favoriser la teneur en potassium foliaire tandis que des phénomènes d'interaction se manifestent au niveau foliaire sur la teneur en phosphore à la suite des traitements N₂K et N₈, et sur la teneur en potassium consécutive au traitement N₂P. Les teneurs en calcium, magnésium et manganèse du feuillage sont très
peu influencées par la fertilisation.

Les dosages de l'azote total et de l'azote ammoniacal ont permis de suivre l'évolution des teneurs en azote du sol après la fertilisation. Seules les teneurs en azote total de la couche humifère F présentent quelques changements tandis que les autres horizons n'accusent aucune réaction, quatre mois après l'application des engrais. En général, le niveau d'azote total dans les humus, qui était passablement élevé avant la fertilisation, n'a pas permis de déceler les nouvelles additions d'azote.

Par contre, l'azote ammoniacal dosé dans les horizons du sol renseigne assez bien sur le devenir des engrais azotés ajoutés. Dans l'horizon F, les teneurs d'azote ammoniacal des placettes fertilisées sont supérieures à celles des témoins, la teneur maximale étant obtenue avec le traitement N₂ (1972 ppm). Dans la couche H, ces augmentations sont plus faibles. Pour les placettes fertilisées avec le nitrate d'ammonium (Nₙ) et le sulfate d'ammonium (Nₛ), les quantités d'azote récupérées sont plus faibles à comparer avec celles dosées à la suite du traitement N₂ (urée), à cause des différences de mobilité entre les formes d'azote ajoutées au sol; ainsi, l'urée semblerait plus avantageuse (Roberge 1971). De plus, l'azote ammoniacal récupéré pour les traitements N₂P, N₂K et N₂PK, témoigne d'une lessivage plus accentué de l'urée lorsque celle-ci est ajouté conjointement avec P et K.
BIBLIOGRAPHIE

APPENDICE I

FIGURES
Figure 1

-localisation des secteurs
FIGURE 6
VARIATION DE LA LONGUEUR DES AIGUILLES (mm) DE L'ANNEE COURANTE
TIERS SUPERIEUR DE LA CIME - MOYENNE PAR TRAITEMENT
SAPIN BARRIER - SECTEUR EXPERIMENTAL LEMINES, 69-66

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1- témoin</td>
<td>5 - N2X</td>
<td>6 - N2PK</td>
<td>7 - Nn</td>
<td>8 - Ns</td>
</tr>
<tr>
<td>2 - N2</td>
<td>3 - N2P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20 | 16 | 12 | 8 | 4 | 0

54
FIGURE 5
VARIATION DU POIDS (n. d'aiguilles/g) DES AIGUILLES DE L'ANNEE COURANTE
TIERS SUPERIEUR DE LA CIME - MOYENNE PAR TRAITEMENT
SAPIN BAUMIER - SECTEUR EXPERIMENTAL LEMIEUX, 69-06

<table>
<thead>
<tr>
<th>Traitements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- témoins</td>
</tr>
<tr>
<td>2- N1</td>
</tr>
<tr>
<td>3- N2</td>
</tr>
<tr>
<td>4- N2P</td>
</tr>
<tr>
<td>5- N2K</td>
</tr>
<tr>
<td>6- N2PK</td>
</tr>
<tr>
<td>7- N1</td>
</tr>
<tr>
<td>8- N2</td>
</tr>
</tbody>
</table>

N. d'aig./g

1970

1971

1972

1973
VARIATION DE LA CONCENTRATION EN AZOTE (P. 100) DES AIGUILLES DE L'ANNEE COURANTE

FIGURE 6

TIERS SUPERIEUR DE LA CIME - HOYERNE PAR TRAITEMENT

SAINT BAAUZEL - SECTEUR EXPERIMENTAL LEMIEUX, 69-06
FIGURE 7
VARIATION DE LA CONCENTRATION EN PHOSPHORE (ppm) DES AIGUILLES DE L'ANNÉE COURANTE
TIERS SUPERIEUR DE LA CIME - MOYENNE PAR TRAITEMENT
SAPIN BAUMIER - SECTEUR EXPERIMENTAL LEMIEUX, 69-06

Traitements

1- témoin 5- N2K
2- N1 6- N2PK
3- N2 7- N8
4- N2P 8- N8

ppm
2,000 -
1,500 -
1,000 -
500 -
0 -

1 2 3 4 5 6 7 8
Traitements 1969

1 2 3 4 5 6 7 8
Traitements 1970

1 2 3 4 5 6 7 8
Traitements 1971

1 2 3 4 5 6 7 8
Traitements 1972

1 2 3 4 5 6 7 8
Traitements 1973

ppm
2,000 -
1,500 -
1,000 -
500 -
0 -
FIGURE 8
VARIATION DE LA CONCENTRATION EN POTASSIUM (ppm) DES AIGUILLES DE L'ANNEE COURANTE
TIERS SUPERIEUR DE LA CIME - MOYENNE PAR TRAITEMENT
SAPIN BAUMIER - SECTEUR EXPERIMENTAL LEMIEUX, 69,06

<table>
<thead>
<tr>
<th>Traitements</th>
<th>1 - témoin</th>
<th>2 - N₁</th>
<th>3 - N₂</th>
<th>4 - N₂P</th>
<th>5 - N₂K</th>
<th>6 - N₂PK</th>
<th>7 - N₃</th>
<th>8 - N₄</th>
</tr>
</thead>
</table>

![Bar chart showing variation of potassium concentration in current year needles at the top third of the shoot - average per treatment. Sapin Baumier - Experimental Sector Lemieux, 69,06.](chart.png)
FIGURE 9

VARIATION DE LA CONCENTRATION EN AZOTE (p. 100) DES AIGUILLES DE L'ANNEE COURANTE

TIERS SUPERIEUR DE LA CIME - MOYENNE PAR TRAITEMENT

SAPIN BAUMIER - SECTEUR EXPERIMENTAL CUQ, 69-01

<table>
<thead>
<tr>
<th>Traitements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- témoin</td>
</tr>
<tr>
<td>2- N₁</td>
</tr>
<tr>
<td>3- N₂</td>
</tr>
<tr>
<td>4- N₂P</td>
</tr>
<tr>
<td>5- N₂K</td>
</tr>
<tr>
<td>6- N₂PK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traitement 1969

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traitement 1970

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traitement 1974
FIGURE 10

VARIATION DE LA CONCENTRATION EN PHOSPHORE (ppm) DES AIGUILLES DE L'ANNEE COURANTE

TIERS SUPERIEUR DE LA CIME – MOYENNE PAR TRAITEMENT

SAPIN BAUMIER – SECTEUR EXPERIMENTAL CUQ, 69-01

<table>
<thead>
<tr>
<th>Traitements</th>
<th>1– Témoin</th>
<th>4– N₉P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2– Nᵡ</td>
<td>5– N₉K</td>
</tr>
<tr>
<td></td>
<td>3– Nᵡ</td>
<td>6– NᵡPK</td>
</tr>
</tbody>
</table>

ppm

0
0,500
1,000
1,500
2,000

Traitements 1969

Traitements 1970

Traitements 1974
FIGURE 11
VARIATION DE LA CONCENTRATION EN POTASSIUM (ppm) DES AIGUILES DE L'ANNEE COURANTE
TIERS SUPERIEUR DE LA CIME – MOYENNE PAR TRAITEMENT
SAPIN BAUMIER – SECTEUR EXPERIMENTAL CUQ, 69-01

<table>
<thead>
<tr>
<th>Traitements</th>
<th>1- témoin</th>
<th>2- N1</th>
<th>3- N2</th>
<th>4- N2P</th>
<th>5- N2K</th>
<th>6- N2PK</th>
</tr>
</thead>
</table>

Graphique montrant la concentration en potassium pour les différentes années (1969, 1970, 1974) et traitements (1- témoin, 2- N1, 3- N2, 4- N2P, 5- N2K, 6- N2PK).
Figure 12

Variation de la concentration en azote total (p.100) des horizons du sol, 4 mois après fertilisation - Secteur expérimental Lemieux 69-06 (moyenne et écart type par traitement)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizon H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horizon Ae+Bfh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

moyenne
écart type
Figure 13

Variation de la concentration en azote total (p.100) des horizons du sol, 4 mois après fertilisation - Secteur expérimental Chabot 69-07
(moyenne et écart type par traitement)

[Diagram showing concentration variation in different soil horizons with treatments.]
La fertilisation des peuplements forestiers, dix ans environ avant la coupe finale, peut être un moyen assez simple d’accroître la production des forêts du Québec. C’est pourquoi le ministère des Terres et Forêts, par son Service de la recherche, a apporté une contribution si importante au Projet inter-provincial de fertilisation des forêts naturelles, en établissant 40 secteurs d’expérimentation dans le but de mesurer l’effet des fertilisants sur l’augmentation du taux de croissance des arbres et d’identifier les engrais à utiliser et leur taux d’absorption. Cependant, la fertilisation manuelle est impraticable sur de grandes superficies. Le Service collabore donc au Projet inter-provincial de fertilisation aérienne des forêts naturelles, qui vise à trouver des méthodes efficaces et économiques de fertiliser de grandes superficies de même qu’à évaluer les effets d’une fertilisation à grande échelle sur l’environnement.