RECHERCHE ET DÉVELOPPEMENT SUR LE PEUPLIER

XII- IMPACT DU TAUX DE FERTILISATION, DU MODE ET DE LA PÉRIODE D’ÉPANDAGE SUR LA CROISSANCE

par Gilles Sheedy
RECHERCHE ET DEVELOPPEMENT SUR LE PEUPLIER

XII - IMPACT DU TAUX DE FERTILISATION, DU MODE ET DE LA PERIODE D'EPANDAGE SUR LA CROISSANCE

par

GILLES SHEEDY

MEMOIRE N° 47

SERVICE DE LA RECHERCHE
DIRECTION GENERALE DES FORETS
MINISTERE DES TERRES ET FORETS

1978
Dépôt légal

Bibliothèque nationale du Québec
AVANT-PROPOS

Les résultats des travaux de fertilisation sur les peupliers hybrides sont le fruit du travail de plusieurs. Mentionnons tout d’abord la précieuse collaboration du Dr Gilles Vallée, ing.f., principal artisan de la mise en place du programme de culture et d’amélioration des peupliers hybrides au ministère des Terres et Forêts, et l’aide technique de MM. Jacques Haelters, Conrad Thomassin et Hervé Gagnon qui ont procédé à la mise en place, au mesurage et à l’échantillonnage foliaire du dispositif expérimental et à la compilation des résultats.

Mentionnons également la collaboration de MM. Yvon Richard et Mario Ménard, qui ont procédé à l'analyse statistique des résultats. Nos remerciements s’adressent aussi au personnel de secrétariat et de l’édition ainsi qu’à tous ceux qui ont bien voulu lire et corriger le manuscrit de ce rapport.
RÉSUMÉ

Ce mémoire étudie les effets d'une fertilisation en N, P et K sur la croissance de deux clones de peupliers. Les engrais ont été appliqués soit en plein, soit par bandes de 0,6 m de chaque côté des rangées de plants et leur épandage au printemps s'est échelonné sur une période d'un à trois ans à partir du moment de la plantation.

Les résultats de cette étude montrent que la croissance des clones est affectée par la fertilisation durant l'année de l'application et que cet effet des engrais diminue rapidement par la suite. Au début de la plantation, il est préférable d'utiliser des doses moyennes d'engrais (112 kg/ha de N, P, K). L'application des engrais par bandes à cette période donne d'aussi bons résultats de croissance que l'application en plein. Les applications d'engrais un an ou deux ans après la plantation sont plus efficaces. Le meilleur traitement pour la production et considérant le coût des engrais consiste à appliquer 56 kg de N, de P et de K la première année sur une bande de 1,2 m de largeur et d'ajouter la deuxième année 112 kg des mêmes éléments, à plein.

Cette étude montre aussi que les clones qui ont été utilisés étaient mal adaptés aux conditions de climat qui existent à la ferme.
populicole de Cabano, réduisant ainsi l'impact des traitements de fertilisation sur la croissance des peupliers. Les meilleurs résultats de croissance et de taux de survie ont été obtenus avec le clone B-201-B.
ABSTRACT

This research paper studies the effects of N--P--K fertilization on growth of two clones of poplar. Fertilizers were applied during the first three years of the plantation, either on all the surface or on 0.6 m wide strips on both sides of the line of trees.

Results show that growth is affected by fertilization but that the effects are very shortlasting. It seems preferable to use moderate quantities of fertilizers (112 kg/ha) for the first year of the plantation. The results were the same whatever the mode of application. However, it seems more effective to apply fertilizers one or two years after plantation. The best results were obtained with the application of 56 kg of N, P and K the first year of plantation on 1.2 m wide strips and the application of 112 kg of the same elements on all the surface the second year.

This study shows that the clones used here were not adapted to soil and climate conditions prevailing at the Cabano poplar farm, thus reducing the response to fertilizer treatments. Clone B-201-B gave the best results for survival rate and growth in this study.
<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVANT-PROPOS</td>
<td>iii</td>
</tr>
<tr>
<td>RESUME</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE DES MATIERES</td>
<td>ix</td>
</tr>
<tr>
<td>LISTE DES TABLEAUX</td>
<td>xi</td>
</tr>
<tr>
<td>LISTE DES FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPITRE I - MATERIEL ET METHODE</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Description de la station</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Préparation du terrain et plantation</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Fertilisation</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Analyses statistiques</td>
<td>5</td>
</tr>
<tr>
<td>CHAPITRE II - RESULTATS</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Résultats de croissance</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Résultats des analyses foliaires</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Résultats de l'analyse du sol</td>
<td>15</td>
</tr>
<tr>
<td>CHAPITRE III - DISCUSSION ET CONCLUSION</td>
<td>21</td>
</tr>
<tr>
<td>BIBLIOGRAPHIE</td>
<td>25</td>
</tr>
<tr>
<td>Tableau</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Traitements de fertilisation appliqués, mode d'application des engrais et calendrier de fertilisation</td>
</tr>
<tr>
<td>2</td>
<td>Résultats des mesures dendrométriques de 1972 à 1976 pour le clone B-201-B</td>
</tr>
<tr>
<td>3</td>
<td>Résultats des mesures dendrométriques de 1972 à 1976 pour le clone Q-36-Q</td>
</tr>
<tr>
<td>4</td>
<td>Résultats des analyses de variance effectuées sur la hauteur et le diamètre de 1973 et de 1976 et sur le volume de 1976</td>
</tr>
<tr>
<td>5</td>
<td>Résultats des analyses foliaires de 1972 à 1975 pour le clone B-201-B</td>
</tr>
<tr>
<td>6</td>
<td>Résultats des analyses foliaires de 1972 à 1975 pour le clone Q-36-Q</td>
</tr>
<tr>
<td>7</td>
<td>Résultats des analyses du sol</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Localisation</td>
</tr>
<tr>
<td>2</td>
<td>Préparation du terrain avant la plantation</td>
</tr>
<tr>
<td>3</td>
<td>Fertilisation du dispositif en juin 1974</td>
</tr>
<tr>
<td>4</td>
<td>Hauteur des plants en 1972, traitement 10 (témoin) et traitement 2 (234-236-235)</td>
</tr>
<tr>
<td>5</td>
<td>Hauteur des plants en 1977 et différence entre les deux clones</td>
</tr>
</tbody>
</table>
INTRODUCTION

Les essais de fertilisation sur les clones de peupliers hybrides ont débuté en 1969 au populetum de Matane et plusieurs aspects de cette technique ont été étudiés depuis (Vallée et al., 1973).

Les résultats à ce jour montrent que les peupliers hybrides réagissent bien à l'addition d'engrais, que l'azote est un des éléments qui stimulent le plus la croissance des peupliers et que les effets des engrais sur la croissance sont généralement de courte durée (Sheedy et Vallée 1976, Sheedy 1976).

Cette étude a été entreprise dans le but de déterminer s'il est préférable de fertiliser les peupliers au moment de la plantation, un an après ou deux ans après et quel serait le mode d'apandage le plus efficace.
CHAPITRE I

MATERIEL ET METHODE

1.1 DESCRIPTION DE LA STATION

Cette étude a été réalisée à la ferme populicole de Cabano, située à environ 15 km au nord du village de Rivière-Bleue, à 47°30' de latitude nord et 69°03' de longitude ouest (fig. 1).

La ferme est établie sur le site d'une ancienne érablière à bouleau jaune et d'une sapinière à thuya qui ont brûlé et se sont régénérées en tremblaiâtre à épinette blanche et sapin baumier; elle fait partie de la section L.6 (Témiscouata-Restigouche) de Rowe (1959).

Le sol est constitué de dépôts morainiques rocheux et assez profonds et il est du type podzol humo-ferrique; la texture varie de limono-sableuse à limono-argileuse.

La précipitation totale moyenne annuelle est de 82,3 cm et la température moyenne annuelle est de 3,3°C. La température moyenne des mois de juin, juillet et août est de 16,3°C (Villeneuve, 1967).
1.2 **PREPARATION DU TERRAIN ET PLANTATION**

Le terrain a été défriché et préparé pour la plantation à l'aide d'un *Rock Rake* et d'une herse à disques à l'automne de 1971 (fig. 2) (Bedos, 1972). Le dispositif expérimental occupe une superficie d'environ 1,5 ha. La plantation des 980 boutures d'environ 35 cm de longueur a été effectuée à la main à un espacement de 3 m × 3 m, en mai 1972. Nous avons utilisé deux clones pour cette étude: B-201-B (*P. angulata* × *P. trichocarpa*) et Q-36-Q (*P. × euramericana*).

1.3 **FERTILISATION**

La fertilisation du dispositif s'est effectuée en juin 1972 pour certains traitements et s'est poursuivie au printemps de 1973 et de 1974 après la fonte de la neige (fig. 3). Les engrais ont été appliqués soit en plein, soit par bandes de 1,2 m de largeur (0,6 m de chaque côté des plants). Les traitements de fertilisation, le mode d'épandage et le calendrier de fertilisation sont présentés au tableau 1. Nous avons utilisé pour la fertilisation de 1972 un mélange homogène (préparé par la compagnie productrice) de 10 parties d'urée (45 p. 100 d'azote), de 25 parties de superphosphate triple (46 p. 100 de P₂O₅; 18 p. 100 de Ca) et de 10 parties de muriate de potasse (60 p. 100 de K₂O). Par la suite, nous avons utilisé les mêmes engrais, mais séparément. Tous les épandages ont été faits à la main.

Ce dispositif de fertilisation comprend 2 répétitions de 10 traitements distribués au hasard. Chaque traitement est expérimenté dans une parcelle de 21,5 par 21,5 m. Une parcelle comprend 49 plants, soit 3 rangées de 7 plants pour un clone et 4 rangées de 7 plants pour l'autre.
Au mois de juin de chaque année, nous avons passé une herse à disques entre les lignes de plantation afin de réprimer la végétation herbacée et d'ameublir le sol. Les mesures sur les plants (pousse annuelle, hauteur totale et diamètre) et l'échantillonnage des feuilles ont été réalisés à l'automne de chaque année. L'échantillonnage du sol a été réalisé avant la mise en place du dispositif. La préparation et l'analyse chimique des échantillons de feuilles et de sol ont été effectuées selon les procédures normalement utilisées au laboratoire du Service de la recherche (Amiot et Bernier, 1962).

1.4 ANALYSES STATISTIQUES

TABLEAU 1

TRAITEMENTS DE FERTILISATION APPLIQUES, MODE D'APPLICATION DES ENGRAIS ET CALENDRIER DE FERTILISATION

LES DOSES D'ELEMENTS SONT EN kg/ha

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56- 62- 62 bande 1,2 m</td>
<td>56- 56- 56 en plein</td>
<td>0- 0- 0</td>
<td>112-118-118</td>
</tr>
<tr>
<td>2</td>
<td>112-124-123 bande 1,2 m</td>
<td>112-112-112 en plein</td>
<td>0- 0- 0</td>
<td>224-236-235</td>
</tr>
<tr>
<td>3</td>
<td>112-124-123 bande 1,2 m</td>
<td>0- 0- 0</td>
<td>128-112-112 en plein</td>
<td>240-236-235</td>
</tr>
<tr>
<td>4</td>
<td>56- 62- 62 bande 1,2 m</td>
<td>112-112-112 en plein</td>
<td>0- 0- 0</td>
<td>168-174-174</td>
</tr>
<tr>
<td>5</td>
<td>112-124-123 bande 1,2 m</td>
<td>0- 0- 0</td>
<td>0- 0- 0</td>
<td>112-124-123</td>
</tr>
<tr>
<td>6</td>
<td>128-140-141 en plein</td>
<td>112-112-112 en plein</td>
<td>0- 0- 0</td>
<td>240-252-253</td>
</tr>
<tr>
<td>7</td>
<td>128-140-141 en plein</td>
<td>0- 0- 0</td>
<td>0- 0- 0</td>
<td>128-140-141</td>
</tr>
<tr>
<td>8</td>
<td>255-280-283 en plein</td>
<td>0- 0- 0</td>
<td>0- 0- 0</td>
<td>255-280-283</td>
</tr>
<tr>
<td>9</td>
<td>56- 62- 62 bande 1,2 m</td>
<td>56- 56- 56 en plein</td>
<td>64- 56- 56³ en plein</td>
<td>176-174-174</td>
</tr>
<tr>
<td>10</td>
<td>0- 0- 0 témoins</td>
<td>0- 0- 0</td>
<td>0- 0- 0</td>
<td>0- 0- 0</td>
</tr>
</tbody>
</table>

¹ L'application des engrais s'est faite à la main en utilisant un mélange homogène de 10-25-10 (urée, triple superphosphate et muriate de potasse).

² A partir de 1973, les engrais ont été appliqués séparément.

³ En 1974, la répétition B du traitement 9 a été de 128-56-56 au lieu de 64-56-56.
Figure 2. Préparation du terrain avant la plantation.

Figure 3. Fertilisation du dispositif en juin 1974.
CHAPITRE II

RESULTATS

2.1 RESULTATS DE CROISSANCE

Les résultats des mesures dendrométriques par clone, de 1972 à 1976, sont présentés aux tableaux 2 et 3. L'examen de ces tableaux montre que la fertilisation a eu des effets importants sur la croissance en hauteur, la hauteur et le diamètre des plants lors des applications d'engrais de 1972 à 1974 et que ces effets (au niveau de la croissance) se sont rapidement estompés par la suite. Ainsi, lors de la fertilisation de 1972, ce sont les plants qui ont reçu les plus fortes doses d'engrais qui présentent les meilleures croissances en hauteur (traitements 2, 3, 5, 6 et 8). Les résultats de croissance de 1972 pour les plants du clone B-201-B qui ont reçu le traitement 7 (128 - 140 - 141 en plein) sont cependant décevants et ne correspondent pas à ceux observés avec des traitements équivalents (6, 2, 3 et 5). Y aurait-il eu lessivage des engrais ou mauvaise répartition de ceux-ci dans les placettes?
TABLEAU 2
RESULTATS DES MESURES DENDROMETRIQUES DE 1972 à 1976 POUR LE CLONE B-201-B

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 112-118-118</td>
<td>0,4 0,9 0,8 1,0 0,8</td>
<td>0,4 1,5 2,1 3,1 4,0</td>
<td>2,0 4,1</td>
<td>2,7</td>
<td>87</td>
<td>4</td>
</tr>
<tr>
<td>2 224-236-235</td>
<td>0,7 1,2 0,6 0,9 0,8</td>
<td>0,7 1,9 2,5 3,1 4,4</td>
<td>2,8 4,4</td>
<td>3,5</td>
<td>96</td>
<td>16</td>
</tr>
<tr>
<td>3 240-236-235</td>
<td>0,7 0,8 1,1 0,9 0,9</td>
<td>0,7 1,4 2,4 3,1 4,3</td>
<td>2,0 4,5</td>
<td>3,5</td>
<td>87</td>
<td>5</td>
</tr>
<tr>
<td>4 168-174-174</td>
<td>0,6 1,2 0,7 1,1 1,0</td>
<td>0,6 1,8 2,6 3,5 4,6</td>
<td>3,0 5,0</td>
<td>4,3</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>5 112-124-123</td>
<td>0,8 0,6 0,8 0,9 0,8</td>
<td>0,8 1,4 2,2 3,1 4,1</td>
<td>2,5 4,3</td>
<td>2,9</td>
<td>92</td>
<td>4</td>
</tr>
<tr>
<td>6 240-252-253</td>
<td>0,7 1,1 0,7 1,0 0,8</td>
<td>0,7 1,8 2,6 3,3 4,3</td>
<td>3,6 4,6</td>
<td>3,5</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>7 128-140-141</td>
<td>0,5 0,5 0,7 1,0 0,7</td>
<td>0,5 1,1 1,8 2,8 3,4</td>
<td>1,8 2,8</td>
<td>1,1</td>
<td>94</td>
<td>4</td>
</tr>
<tr>
<td>8 255-280-283</td>
<td>0,8 0,7 0,6 1,0 0,8</td>
<td>0,8 1,5 2,0 2,8 3,7</td>
<td>2,0 3,4</td>
<td>1,7</td>
<td>81</td>
<td>12</td>
</tr>
<tr>
<td>9 176-174-174</td>
<td>0,5 0,8 1,0 0,9 0,8</td>
<td>0,5 1,4 2,3 3,1 4,0</td>
<td>1,8 3,9</td>
<td>2,4</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>10 Témoin</td>
<td>0,5 0,6 0,8 1,1 0,8</td>
<td>0,5 1,1 1,9 3,1 3,9</td>
<td>1,3 3,7</td>
<td>2,1</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,6 0,8 0,8 1,0 0,8</td>
<td>0,6 1,5 2,2 3,1 4,1</td>
<td>2,3 4,1</td>
<td>2,8</td>
<td>92</td>
<td>6</td>
</tr>
</tbody>
</table>

1 Le diamètre de 1973 a été pris à 1 m alors que celui de 1976 a été pris à 1,5 m de hauteur.

2 Volume moyen d'une tige, c'est-à-dire somme des Volumes totaux (Vt) divisée par le Nombre total (nt) de tiges.

\[Vt = \left(\frac{d^2 \times 0,005454 \times H-3}{3} \right) + \left(\frac{d^2 \times 0,005454 \times 3}{3} \right), \]

3 Ce taux de survie ne comprend pas les rejets de souche.

4 Rejets de souche = tous les plants dont la tige principale a subi des dommages importants à la suite du gel, d'attaques par les insectes ou les maladies, de broutage par les animaux, etc.
Les résultats de 1973 montrent qu'il n'est pas nécessaire d'appliquer de fortes doses d'engrais l'année même de la plantation (traitement 8 vs les traitements 2, 4 et 6) et qu'au début de la plantation, la fertilisation par bande est aussi efficace que la fertilisation en plein. Les applications d'engrais en plein la deuxième année (1, 2, 4 et 6) (Fig. 4) et la troisième année (3 et 9) après la plantation ont eu des effets marqués sur les croissances en hauteur l'année de l'application, mais ces effets ont été de courte durée de sorte qu'en 1976, il n'existe plus de différences importantes dans les résultats de croissance entre les traitements (Fig. 5). On observe les meilleurs résultats de croissance avec les plants qui ont reçu les plus fortes doses d'engrais en 1973 (2, 4 et 6) et 1974 (3). Les deux clones utilisés pour cette étude présentent des résultats de croissance et de taux de survie différents (tableau 2 et 3). Ces constatations sont confirmées par les résultats des analyses statistiques présentées au tableau 4. Ce tableau fait ressortir, en effet, qu'il existe des différences significatives entre les traitements, les clones et les répétitions, pour la hauteur et le diamètre des plants en 1973. Les différences entre les traitements et les répétitions se sont estompées en 1976 (seul le diamètre présente encore des différences significatives entre les traitements) alors que les différences de croissance entre les clones sont très significatives.

Ces résultats font ressortir que le clone B-201-B est mieux adapté que le clone Q-36-Q aux conditions de climat qui prévalent dans la région (tout au moins pour les premières années de croissance). Ce clone présente en effet une croissance et un taux de survie supérieurs à ceux de
TABLEAU 3
RESULTATS DES MESURES DENDROMETRIQUES DE 1972 A 1976 POUR
LE CLONE Q-36-Q

<table>
<thead>
<tr>
<th>Traitement (\text{N} - \text{P} - \text{K})</th>
<th>Croissance moyenne en hauteur (m)</th>
<th>Hauteur moyenne (m)</th>
<th>Diamètre (^{(1)}) (cm)</th>
<th>Volume (^{(2)}) (dm(^3))</th>
<th>Survie (^{(3)}) p. 100</th>
<th>Rejets (^{(4)}) p. 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 112-118-118</td>
<td>0.4 0.8</td>
<td>0.7 1.0</td>
<td>0.7</td>
<td>0.4 1.2</td>
<td>2.0 2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>2 224-236-235</td>
<td>0.5 0.9</td>
<td>0.6 1.0</td>
<td>0.7</td>
<td>0.5 1.3</td>
<td>1.8 2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>3 240-236-235</td>
<td>0.5 0.6</td>
<td>0.9 1.2</td>
<td>0.7</td>
<td>0.5 1.2</td>
<td>2.0 2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>4 168-174-174</td>
<td>0.4 0.9</td>
<td>0.7 1.0</td>
<td>0.7</td>
<td>0.4 1.2</td>
<td>1.9 2.7</td>
<td>3.5</td>
</tr>
<tr>
<td>5 112-124-123</td>
<td>0.5 0.6</td>
<td>0.7 1.0</td>
<td>0.7</td>
<td>0.5 1.2</td>
<td>1.7 2.1</td>
<td>3.3</td>
</tr>
<tr>
<td>6 240-252-253</td>
<td>0.5 0.9</td>
<td>0.6 0.9</td>
<td>0.8</td>
<td>0.5 1.4</td>
<td>1.9 2.6</td>
<td>3.6</td>
</tr>
<tr>
<td>7 128-140-141</td>
<td>0.5 0.6</td>
<td>0.6 0.9</td>
<td>0.8</td>
<td>0.5 1.0</td>
<td>1.5 2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>8 255-280-283</td>
<td>0.5 0.6</td>
<td>0.5 0.9</td>
<td>0.6</td>
<td>0.5 1.0</td>
<td>1.6 2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>9 176-174-174</td>
<td>0.5 0.8</td>
<td>0.8 1.0</td>
<td>0.7</td>
<td>0.5 1.3</td>
<td>2.0 2.8</td>
<td>3.6</td>
</tr>
<tr>
<td>10 Témoin</td>
<td>0.4 0.6</td>
<td>0.7 1.1</td>
<td>0.8</td>
<td>0.4 1.1</td>
<td>1.7 2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0.5 0.7</td>
<td>0.7 1.0</td>
<td>0.7</td>
<td>0.5 1.2</td>
<td>1.8 2.5</td>
<td>3.3</td>
</tr>
</tbody>
</table>

\(^{(1)}\) \(^{(2)}\) \(^{(3)}\) \(^{(4)}\) Voir tableau 2, p. 10.
l'autre clone et un nombre moins élevé de rejets de souche1. Ainsi, en moyenne, 6 p. 100 des plants du clone B-201-B sont des rejets de souche alors que pour le clone Q-36-Q, ce taux est de 9 p. 100.

Le nombre de rejets de souche varie aussi en fonction des traitements de fertilisation; il est plus élevé en moyenne pour les traitements où l'on a appliqué de fortes doses d'engrais au départ. Des résultats semblables ont été observés au Populetum de Matane (Sheedy et Vallée, 1976). Ainsi, pour le traitement 8 (255-280-283), 12 p. 100 des tiges du clone B-201-B et 14 p. 100 des tiges du clone Q-36-Q sont des rejets de souche. Les dégâts de gel sur les pousses de ces clones ont nuit à la croissance des plants et ont peut-être affecté la réaction des clones aux traitements de fertilisation pour ce qui est de la croissance en hauteur. Il est à noter cependant que les rejets de souches ont été enlevés des compilations présentées aux tableaux 2 et 3.

1 Tous les plants dont la tige principale a subi des dommages importants par suite du gel, d'attaques par les insectes ou de broutage par les animaux.
TABLEAU 4

RESULTATS DES ANALYSES DE VARIANCE EFFECTUEES
SUR LA HAUTEUR ET LE DIAMETRE DE 1973 ET DE 1976
ET SUR LE VOLUME DE 1976

<table>
<thead>
<tr>
<th>Constituants</th>
<th>N.d.1.</th>
<th>Valeur de F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hauteur</td>
</tr>
<tr>
<td>Traitements</td>
<td>9,19</td>
<td>4,6**</td>
</tr>
<tr>
<td>Clones</td>
<td>1,19</td>
<td>44,2**</td>
</tr>
<tr>
<td>Interaction (clones et traitements)</td>
<td>9,19</td>
<td>1,2</td>
</tr>
<tr>
<td>Répétitions</td>
<td>1,19</td>
<td>12,1**</td>
</tr>
</tbody>
</table>

* indique une différence significative au seuil de 0,05
** indique une différence significative au seuil de 0,01
2.2 RESULTATS DES ANALYSES FOLIAIRES

Les résultats des analyses de feuilles sont présentés aux tableaux 5 et 6. Il existe des différences dans les concentrations en éléments des feuilles selon les clones utilisés, les traitements de fertilisation et les années d'échantillonnage. Les concentrations en N, P et K des feuilles prélevées en 1972 augmentent avec les doses d'engrais appliquées; de même, en 1973, les feuilles des plants qui ont reçu les traitements 2, 4 et 6 (112, 112, 112 kg/ha) présentent des teneurs en N, P et K supérieures à celles des autres feuilles. On remarque, cependant, que les concentrations en éléments des feuilles des plants témoins sont supérieures à certaines de celles qui ont reçu des traitements de fertilisation et que les effets de ces derniers sur les concentrations en éléments des feuilles s'estompent rapidement.

En général, les teneurs en N, P, K et Mg des feuilles sont plus élevées pour le clone Q-36-Q que pour le clone B-201-B et les teneurs en éléments varient beaucoup d'une année à l'autre. Dans l'ensemble, ces teneurs en éléments des feuilles sont supérieures aux seuils de déficience proposés pour cette essence (White et Carter, 1970).

2.3 RESULTATS DE L'ANALYSE DU SOL

Les résultats de l'analyse de sol sont présentés au tableau 7. Ils montrent une légère variation dans les résultats selon les répétitions et, sauf pour K, les teneurs en éléments du sol sont supérieures aux standards minimums de fertilité proposés pour le peuplier (Wilde, 1968). Signalons toutefois que les échantillons de sol ont été prélevés au
Figure 4. Hauteur des plants en 1972, traitement 10 (témoin) et traitement 2 (234-236-235).

Traitement 2

Traitement 10

Figure 5. Hauteur des plants en 1977 et différence entre les deux clones.
TABLEAU 5

RESULTATS DES ANALYSES FOLIAIRES DE 1972 A 1975 POUR LE CLONE B-201-B

<table>
<thead>
<tr>
<th>Trait.</th>
<th>Concentration en N (p. 100)</th>
<th>Concentration en P (p. 100)</th>
<th>Concentration en K (p. 100)</th>
<th>Concentration en Mg (p. 100)</th>
<th>Concentration en Ca (p. 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,30</td>
<td>1,65</td>
<td>2,22</td>
<td>2,02</td>
<td>0,18</td>
</tr>
<tr>
<td>2</td>
<td>2,66</td>
<td>1,64</td>
<td>2,06</td>
<td>2,05</td>
<td>0,18</td>
</tr>
<tr>
<td>3</td>
<td>2,56</td>
<td>1,50</td>
<td>2,05</td>
<td>2,08</td>
<td>0,26</td>
</tr>
<tr>
<td>4</td>
<td>1,99</td>
<td>1,60</td>
<td>1,97</td>
<td>1,93</td>
<td>0,16</td>
</tr>
<tr>
<td>5</td>
<td>2,51</td>
<td>1,43</td>
<td>2,30</td>
<td>2,34</td>
<td>0,19</td>
</tr>
<tr>
<td>6</td>
<td>2,47</td>
<td>1,66</td>
<td>1,87</td>
<td>2,02</td>
<td>0,20</td>
</tr>
<tr>
<td>7</td>
<td>2,48</td>
<td>1,48</td>
<td>2,11</td>
<td>1,94</td>
<td>0,18</td>
</tr>
<tr>
<td>8</td>
<td>3,16</td>
<td>1,31</td>
<td>2,22</td>
<td>1,97</td>
<td>0,22</td>
</tr>
<tr>
<td>9</td>
<td>2,10</td>
<td>1,52</td>
<td>2,16</td>
<td>2,13</td>
<td>0,13</td>
</tr>
<tr>
<td>10</td>
<td>2,29</td>
<td>1,62</td>
<td>2,27</td>
<td>2,01</td>
<td>0,12</td>
</tr>
<tr>
<td>Moyenne</td>
<td>2,45</td>
<td>1,54</td>
<td>2,12</td>
<td>2,01</td>
<td>0,18</td>
</tr>
</tbody>
</table>

17
Tableau 6

Résultats des analyses foliaires de 1972 à 1975 pour le clone Q-36-Q

<table>
<thead>
<tr>
<th>Trait.</th>
<th>Concentration en N (p. 100)</th>
<th>Concentration en P (p. 100)</th>
<th>Concentration en K (p. 100)</th>
<th>Concentration en Mg (p. 100)</th>
<th>Concentration en Ca (p. 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.21 2.06 2.48 1.99</td>
<td>0.14 0.79 0.34 0.38</td>
<td>1.29 1.44 1.63 1.50</td>
<td>0.29 0.44 0.29 0.29</td>
<td>1.11 1.11 0.93 0.92</td>
</tr>
<tr>
<td>2</td>
<td>2.58 2.12 1.96 1.94</td>
<td>0.17 0.82 0.36 0.34</td>
<td>1.64 1.86 1.89 1.45</td>
<td>0.22 0.30 0.24 0.26</td>
<td>0.92 0.85 0.84 0.80</td>
</tr>
<tr>
<td>3</td>
<td>2.39 1.98 2.26 2.01</td>
<td>0.23 0.55 0.39 0.37</td>
<td>1.75 1.41 1.78 1.34</td>
<td>0.23 0.41 0.24 0.29</td>
<td>1.10 1.13 0.85 0.77</td>
</tr>
<tr>
<td>4</td>
<td>1.99 2.19 2.51 2.08</td>
<td>0.17 0.88 0.43 0.44</td>
<td>1.36 1.81 1.89 1.47</td>
<td>0.29 0.31 0.26 0.30</td>
<td>1.08 0.94 0.94 1.01</td>
</tr>
<tr>
<td>5</td>
<td>2.57 1.88 2.72 2.16</td>
<td>0.18 0.54 0.29 0.21</td>
<td>1.63 1.38 1.46 1.31</td>
<td>0.24 0.42 0.30 0.32</td>
<td>1.10 1.20 0.95 1.04</td>
</tr>
<tr>
<td>6</td>
<td>2.40 1.92 2.29 2.11</td>
<td>0.17 0.89 0.43 0.44</td>
<td>1.47 1.72 1.88 1.58</td>
<td>0.26 0.32 0.25 0.26</td>
<td>0.99 0.90 0.83 0.83</td>
</tr>
<tr>
<td>7</td>
<td>2.78 1.71 2.26 2.10</td>
<td>0.19 0.58 0.34 0.41</td>
<td>1.59 1.50 1.75 1.68</td>
<td>0.25 0.39 0.26 0.27</td>
<td>0.99 1.00 0.87 0.98</td>
</tr>
<tr>
<td>8</td>
<td>2.70 1.60 2.56 2.02</td>
<td>0.22 0.88 0.40 0.44</td>
<td>1.75 1.62 1.75 1.53</td>
<td>0.23 0.37 0.27 0.28</td>
<td>1.01 0.99 0.80 0.90</td>
</tr>
<tr>
<td>9</td>
<td>2.16 1.92 2.50 2.16</td>
<td>0.12 0.60 0.34 0.42</td>
<td>1.46 1.51 1.64 1.47</td>
<td>0.24 0.59 0.26 0.27</td>
<td>0.89 0.98 0.83 0.78</td>
</tr>
<tr>
<td>10</td>
<td>2.18 2.14 2.61 2.17</td>
<td>0.12 0.31 0.24 0.23</td>
<td>1.20 1.30 1.51 1.47</td>
<td>0.29 0.36 0.28 0.29</td>
<td>0.99 0.98 0.74 0.83</td>
</tr>
<tr>
<td>Moyenne</td>
<td>2.40 1.95 2.41 2.07</td>
<td>0.17 0.68 0.36 0.37</td>
<td>1.51 1.57 1.72 1.51</td>
<td>0.25 0.37 0.26 0.28</td>
<td>1.02 1.01 0.86 0.89</td>
</tr>
</tbody>
</table>
TABLEAU 7

RESULTATS DES ANALYSES DU SOL

<table>
<thead>
<tr>
<th>Répétition*</th>
<th>N (p. 100)</th>
<th>Mat. organique (p. 100)</th>
<th>C (p. 100)</th>
<th>C/N</th>
<th>pH</th>
<th>Phos. disp. (ppm)</th>
<th>Cations échangeables (m.é./100 g)</th>
<th>Hydrogène échangeable (m.é./100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,18</td>
<td>4,9</td>
<td>2,87</td>
<td>18,63</td>
<td>5,8</td>
<td>155,4</td>
<td>0,01 1,01 0,14 7,98</td>
<td>2,62</td>
</tr>
<tr>
<td>B</td>
<td>0,18</td>
<td>5,4</td>
<td>3,13</td>
<td>15,93</td>
<td>5,5</td>
<td>119,3</td>
<td>0,01 1,27 0,14 8,04</td>
<td>3,51</td>
</tr>
<tr>
<td>Moy.</td>
<td>0,18</td>
<td>5,2</td>
<td>3,00</td>
<td>17,28</td>
<td>5,6</td>
<td>137,3</td>
<td>0,01 1,17 0,14 8,01</td>
<td>3,06</td>
</tr>
</tbody>
</table>

* Les échantillons sont constitués d'un mélange des horizons L, F, H, Ae et B, ayant été prélevés après labour. La texture est celle d'un loam sableux.
printemps de 1972, après le labour et la préparation du terrain, ce qui explique pourquoi certaines teneurs, comme celles de l'azote par exemple, sont plus élevées qu'elles ne le seraient normalement pour ce type de sol.
CHAPITRE III

DISCUSSION ET CONCLUSION

Les effets des engrais sur la croissance des peupliers sont de faible durée et durant la ou les premières années de plantation, les engrais peuvent être appliqués par bande ou par pied d'arbre. Les traitements à dose moyenne d'engrais appliqués lors de la 2ᵉ année de plantation donnent de bons résultats pour la croissance en hauteur, la hauteur et le diamètre des plants. Le meilleur traitement de fertilisation pour la production et considérant le coût des engrais consiste à appliquer 56 kg, 62 kg et 62 kg de N, P, K respectivement la première année de plantation sur une bande de 1,2 m de largeur et à appliquer de nouveau la deuxième année 112 kg, 112 kg et 112 kg des mêmes éléments à plein. Les plants du clone B-201-B qui ont reçu ce traitement présentaient, par rapport aux plants témoins, une augmentation en volume de 54 p. 100 en 1976.

Les clones n'étaient pas bien adaptés aux conditions de climat que présente la région, particulièrement le clone Q-36-Q, ce
qui a perturbé les effets des engrais sur la croissance, expliquant ainsi
partiellement le manque de différence significative entre les traitements
en 1976.

En moyenne, les nombres de rejets de souche et de plants morts
étaient plus élevés pour les traitements de fertilisation que pour les traite-
tements témoins.

C'est le clone B-201-B qui présente les meilleurs performances
de croissance, le meilleur taux de survie et le plus faible taux de rejets
de souche. Ce clone semble mieux adapté aux conditions de climat qui
prévalent dans la région.

Il y avait en 1973 des différences dans les résultats de
croissance des plants selon les deux répétitions; ces différences se sont
estompées par la suite, peut-être à cause des dégâts de gel sur les
pousses des plants. Le sol de la répétition B est plus humide et plus
pierreux que celui de la répétition A, ce qui pourrait expliquer partiellem-
ent ces différences.

Les teneurs en éléments varient beaucoup selon les années
d'échantillonnage; il existe aussi des différences selon les traitements
et les clones. En général, les teneurs en N, P et K des feuilles augmen-
tent avec l'addition de ces éléments au sol durant l'année de l'applica-
tion pour diminuer rapidement par la suite. Les teneurs en éléments sont
généralement plus élevées avec le clone Q-36-Q et sont supérieures aux
seuils de déficience proposés pour le peuplier.
Le niveau des éléments dans le sol est suffisant pour permettre une bonne croissance des peupliers, à l'exception du K qui est sous le seuil de fertilité recommandé pour cette essence.

Les essences à croissance rapide deviennent de plus en plus importantes pour combler les besoins toujours croissants de matière ligneuse. Parmi ces essences, les peupliers offrent des caractéristiques culturelles très favorables ; ils ont une croissance rapide, une forte production et ils répondent de façon accentuée aux traitements sylvicoles. Conscient du rôle que peut jouer le peuplier dans l'approvisionnement de plusieurs industries forestières, le ministère des Terres et Forêts, par l'entremise de son Service de la recherche, poursuit une série de travaux de recherche et de développement sur le peuplier.