by Audrey Verreault | 12 June 2023
Published in Forest Ecology and Management 544(september 2023): 121127. https://doi.org/10.1016/j.foreco.2023.121127
The future climate of northern temperate forests is projected to be drier and warmer by the end of this century. As a result, more drought-induced forest dieback events are anticipated in northeastern North America, and assessing the vulnerability of dominant tree species to drought is critical for understanding the future composition of these forests. In a greenhouse experiment, we exposed two-year-old seedlings of Picea glauca (Moench) Voss, Picea mariana (Mill.) B.S.P. and Pinus strobus L. to three future climate treatments for southern Quebec, Canada, and evaluated their mortality, growth, and foliage water status responses to soil water availability and atmospheric drought. Using a unique approach, climate treatments emulated droughts of different frequencies, durations, and intensities. Treatments closely simulated one growing season, with changes in air temperature and relative humidity every six hours and daily adjustment in the amount of water delivered to the seedlings. The three species experienced high mortality (75%) in all water-limited treatments compared to a control treatment that provided non-limiting soil moisture (0% mortality). The biomass of the seedlings that survived was 40% lower than that of control seedlings. Our results confirmed that the hydraulic safety margins, defined as the difference between seasonal minimum water potential and xylem water potential leading to 12, 50 and 88% of hydraulic conductivity loss, were good predictors of probability of tree mortality. Therefore, hydraulic safety margins are useful functional traits that can be used to compare the vulnerability of various species to drought and then provide crucial information to practitioners and policymakers to adjust forest management to climate change. We showed that three dominant conifer species of northern temperate forests were highly vulnerable to drought in future climates. Because drought is projected to be a significant threat to forests, understanding potentially adaptive physiological responses to drought, such as hydraulic safety margins of tree seedlings, is important for predicting the response of forest regeneration and composition in warmer and drier climates.
by Audrey Verreault | 10 May 2023
Published in The Conversation (La Conversation) (May 3rd 2023)
While it is true that individual trees are immobile, as a species they can actually move and migrate as well as birds do! However, this takes place over a much different time frame.
by Svetlana Savin | 9 May 2023
Published in Agricultural and Forest Meteorology 335(January): 109469. https://doi.org/10.1016/j.agrformet.2023.109469
Total soil CO2 efflux (FCO2) is the second most important carbon flux after photosynthesis in boreal forests. However, accurate modelling of FCO2 remains challenging because of its high variability, both temporally and spatially. Using an Abies balsamea-dominated boreal landscape in Quebec (eastern Canada) as a case study, we modelled seasonal, intra-seasonal and spatial variability of FCO2 using climate variables and topographic and canopy structure attributes derived from Light Detection and Ranging (LiDAR) and assessed their respective contributions to soil CO2 emissions. Weekly point measurements of FCO2 at 99 sites were taken over an area of 122 ha between June and October 2020. The seasonal component of FCO2 was quantified and subtracted from FCO2 measurements to isolate the spatial and intra-seasonal components of the flux. The two components were then modelled using a Random Forest Regression model and studied using accumulated local effect plots (ALE plots). Our approach explained 81% of the variation in FCO2: the seasonal pattern explained 36% of the variation in FCO2 measurements, while spatial and intra-seasonal patterns together explained 45%. The most important factors explaining spatial variation were vegetation height and the slope height. Average air temperature of the last two days before efflux measurements was the most important factor explaining intra-seasonal variation. The proposed methodology makes it possible to predict FCO2 from external factors derived from climate and remote sensing data and enables the decomposition of FCO2 into its seasonal, intra-seasonal and spatial components. Our results demonstrate the importance of spatial and intra-seasonal variations in FCO2 compared to seasonal variation, a finding that has implications for the measurement and modelling of FCO2 at landscape and global scales.
by Audrey Verreault | 8 May 2023
Published in Forests 14(4): 858. https://doi.org/10.3390/f14040858
The physical properties of peat substrates from eight tree nurseries were characterized to determine bulk density, air-filled porosity, saturated hydraulic conductivity, pore effectiveness, relative gas diffusivity and chemical properties. There were significant variations among nurseries both in growth of white spruce [Picea glauca (Moench) Voss] seedlings (1+0) and substrate properties. Shoot dry mass and root collar diameter were negatively correlated with air-filled porosity and saturated hydraulic conductivity, whereas root dry mass was positively correlated with bulk density. Seedling growth increased with increasing substrate bulk density up to ~0.11 g cm−3, above which value conditions may become limiting to plant performance. Our results suggest that there was no growth limitation due to restricted aeration (Ds D0−1 > 0.005 m2 s−1 m−2 s for all substrates except one) and that over-aeration reduced seedling growth under dry irrigation management.
by Audrey Verreault | 8 May 2023
Published in Frontiers in Forests and Global Change 6: 1146758. https://doi.org/10.3389/ffgc.2023.1146758
Boreal lichen woodlands (LWs) are stable low tree-density zones of the Canadian boreal forest whose afforestation has been proposed as a way to create new C sinks and thus mitigate climate change. Planting operations in these remote areas are however costly and time-consuming, and may not be necessary when soil scarification is followed by dense natural regeneration. In the present study, we assessed the natural regeneration potential and dynamics in six boreal LWs of Québec, Canada, 11 years after soil scarification. The number, size (height and stem diameter) and age of seedlings were measured in 2-4 sampling plots per site (18 plots in total). Our data show that scarification operations produced on average 1,400 m2 ha–1 of exposed mineral soil (scarification intensity of 14%) with, however, a large within-site variability. The natural regeneration was mainly composed of black spruce seedlings (> 95%), averaged ∼12,000 seedlings ha–1 across the six sites and significantly varied among sites, mostly due to the variation in scarification intensity. Seedling density averaged ∼9 seedlings m–2 of exposed mineral soil and increased with seed tree mean diameter at breast height (DBH) (R2 = 0.51; P < 0.05) but not with the density of seed trees, revealing the importance of old and large seed trees in natural regeneration success. Together, scarification intensity and the DBH of remaining seed trees explained ∼60% of the variation in natural regeneration density across the 18 sampled plots. The rate of establishment of seedlings was generally high – with on average 60% of the carrying capacity of the substrate being reached within three years following scarification – and increased with seed tree mean DBH (R2 = 0.77; P < 0.05). However, the growth rate of seedlings was very low. Eleven years after scarification, 60% of the seedlings were < 15 cm and the height of 10-yr-old seedlings averaged 27.5 cm. Thus, even though seedling establishment was successful, the biomass accumulated by the natural regeneration was negligible in the span of a decade. Therefore, the implementation of afforestation following scarification appears to be necessary to create significant C sinks in the midterm.