by Marie-Claude Boileau | 30 January 2019
Published in Ecological Modelling 220: 2770-2781
Estimating prediction uncertainty for a single tree-based model is hindered by the complex structure of these models. In this paper, we addressed this issue with a case study applied to northern hardwood stands in Québec, Canada. SaMARE is a stochastic single tree-based model that was designed for these types of stands. Using a Monte Carlo approach, the model can provide a mean predicted value and its confidence limits for some plot-level attributes.
The mean predicted values were compared to observed values in terms of bias and accuracy. In addition to these common statistics, we compared nominal coverage of Monte Carlo-simulated confidence intervals with real (observed) coverage to verify the adequacy of the simulated uncertainty. A comparison was made using several plot-level attributes, which exhibited an increasing discriminative complexity. This complexity ranges from coarse attributes, such as all-species basal area, up to more complex ones, such as basal area for stems of a particular species and with sawlog potential.
The results showed that in terms of absolute value, biases were small, but could be relatively high with respect to the average observed value when the discriminative complexity of the attribute increased. The comparison between nominal and real coverage of confidence intervals gave satisfactory results for all-species plot-level attributes. However, for some species-specific attributes, the Monte Carlo-simulated confidence intervals overestimated the real coverage.
by Marie-Claude Boileau | 30 January 2019
Published in International Journal of Applied Earth Observation and Geoinformation 11: 334-343
Invasive ericaceous shrubs (e.g. Kalmia angustifolia, Rhododendron groenlandicum, Vaccinium spp.) may reduce the regeneration and early growth of black spruce (Picea mariana) seedlings, the most economically important boreal tree species in Québec. Our study focused, therefore, on developing a method for mapping ericaceous shrubs from satellite images. The method integrates very high resolution satellite imagery (IKONOS) to guide classifiers applied to medium resolution satellite imagery (Landsat-TM). An object-oriented image classification approach was applied using Definiens eCognition software. An independent ground survey revealed 80% accuracy at the very high spatial resolution. We found that the partial use (70%) of classified polygons derived from the IKONOS images were an effective way to guide classification algorithms applied to the Landsat-TM imagery. The results of this latter classification (78.4% overall accuracy) were assessed by the remaining portion (30%) of unused very high resolution classified polygons. We further validated our method (65.5% overall accuracy) by assessing the correspondence of an ericaceous cover classification scheme done with a Landsat-TM image and results of our ground survey using an independent set of 275 sample plots. Discrimination of ericaceous shrub cover from other land cover types was achieved with precision at both spatial resolutions with producer accuracies of 87.7% and 79.4% from IKONOS and Landsat, respectively. The method is weaker for areas with sparse cover of ericaceous shrubs or dense tree cover. Our method is adapted, therefore, for mapping the spatial distribution of ericaceous shrubs and is compatible with existing forest stand maps.
by André Boily | 30 January 2019
Paru dans Simpson, J.D. (ed.). Proceedings of the thirty-first meeting of the Canadian forest genetics association – Adaptation, Breeding and Conservation in the Era of Forest Tree Genomics and Environmental Change. August 25-28, 2008. Québec, Canada. Part 1. p. 37-42.
by Claire Morin | 30 January 2019
Published in Environment Monitoring and Assessment 155: 177-190
Nitrogen additions (NH4NO3) at rates of three- and ten-fold ambient atmospheric deposition (8.5 kg ha−1 year−1) were realised in an acid- and base-poor northern hardwood forest of Québec, Canada. Soil solution chemistry, foliar chemistry, crown dieback and basal area growth of sugar maple (Acer saccharum Marsh.) were measured. Except for a transitory increase of NO3 and NH4 concentrations, there was no persistent increase in their level in soil solution 3 years after N treatments, with the exception of one plot out of three, that received the highest N addition, beginning to show persistent and high NO3 concentrations after 2 years of N additions. Three years of N additions have significantly increased the N DRIS index of sugar maple but not N foliar concentration. Potassium, Ca and Mn foliar concentrations, as well as P and Ca DRIS indices, decreased in treated plots after 3 years. No treatment effect was observed for basal area growth and dieback rate. One unexpected result was the significant decrease in foliar Ca even in the treated plots that received low N rates, despite the absence of significant NO3-induced leaching of Ca. The mechanism responsible for the decrease in foliar Ca is not known. Our results, however, clearly demonstrate that increased N deposition at sites with low base saturation may affect Ca nutrition even when clear signs of N saturation are not observed.
by André Boily | 30 January 2019
Published in For. Ecol. Manage. 258(2009) : 1359-1368
Over the last two centuries, logging has caused major, but unquantified, compositional and structural changes in the southern portion of the North American boreal forest. In this study, we used a series of old forest inventory maps coupled with a new dendrochronological approach for analyzing timber floating histories in order to document the long-term transformation (1820–2000) of a southern boreal landscape (117 000 ha) in eastern Québec, Canada, in response to logging practices. Landscape exploitation became increasingly severe throughout this time period. During the ninetieth century (1820–1900) of limited industrial capacity, selective logging targeted pine and spruce trees and excluded balsam fir, a much abundant species of the forest landscape. Logging intensity increased during the first half of the twentieth century, and targeted all conifer species including balsam fir. After 1975, dramatic changes occurred over the landscape in relation to clear-cutting practices, plantations, and salvage logging, which promoted the proliferation of regenerating areas and extensive plantations of the previously uncommon black spruce. Overall, logging disturbance resulted in an inversion in the forest matrix, from conifer to mixed and deciduous, and from old to regenerating stands, thus creating significant consequences on forest sustainability. If biodiversity conservation and sustainable forestry are to be management goals in such a heavily exploited forested landscape, then restoration strategies should be implemented in order to stop the divergence of the forests from their preindustrial conditions.