Following the appointment of the new Cabinet, the Forest Sector now reports to the ministère des Ressources naturelles et des Forêts, while the Wildlife and Parks Sectors report to the ministère de l'Environnement, de la Lutte aux changements climatiques, de la Faune et des Parcs. Adjustments will be made to the website over time.

Late frost as a driver of ecotypic differentiation in sugar maple: Implications for assisted migration

Published in Agricultural and Forest Meteorology 323(18): 109041. https://doi.org/10.1016/j.agrformet.2022.109041

Global warming advances bud break, mismatches plant phenology from the local climate, and exposes the developing leaves to higher risks of frost damage. Bud break of sugar maple [Acer saccharum (Marsh.)], a species included in recent programs of assisted migration, is sensitive to nighttime spring temperatures. This suggests a link between frost events and leaf development. In this study, we raise the hypothesis that late frost is an evolutionary driver of growth reactivation in sugar maple provenances. We investigated the ecotypic variation of bud phenology in 30 provenances planted in two common gardens within and at the northern limit of the species range, in the Province of Quebec, Canada. Eight phases of bud break were assessed twice a week during 2020 on 252 and 272 seedlings in southern and northern sites, respectively. In the southern site, bud break occurred in May, starting on average 12 days earlier and ending 3 days earlier compared to the northern site. Logistic regression was used to estimate the probability of late frost and the results showed that regions located in the north, at higher elevations, and along the northeastern coast of the native maple range showed the latest occurrences of frost events in spring. This pattern mirrored the timing of bud break. When planted in the same common garden, provenances originating from sites with later spring frosts leafed out earlier. Such differences were maintained across the eight bud phenological phases and between the two common gardens, which indicates a similar response of the provenances to changing growing conditions. To avoid frost damage to sugar maple plantations, assisted migration should account for phenotypic traits in bud phenology, ensuring that the frost regime at the origin of the provenances is compatible with that of plantations.

Clear-cutting without additional regeneration treatments can trigger successional setbacks prolonging the expected time to compositional recovery in boreal forests

Published in European Journal of Forest Research 141: 629–639. https://doi.org/10.1007/s10342-022-01465-5

Clear-cutting is one of the most widespread forestry practices used in boreal forests. Clear-cutting of boreal forests in late successional stages could trigger reversion of successional trajectories back toward forests of earlier stages. Such successional setbacks could generate sustainability issues by prolonging the expected time to compositional recovery after clear-cutting. This could lead to overestimation of allowable cuts of economically important late-successional species if the occurrence of successional setbacks remains unassessed. Our objective was to assess whether clear-cutting without additional regeneration treatments has triggered successional setbacks. We studied post-clearcut successional trajectories by using forest inventory data in post-clearcut stands, in light of conceptual successional dynamics models. These data covered the actively managed boreal forest region of Quebec, eastern Canada, which is classified into two ecological regions, themselves subdivided into eastern (cool–wet) and western (warm–dry) sub regions. Clear-cutting triggered successional setbacks in half of these regions. Such setbacks could prolong, by at least an additional century, the expected time to compositional recovery after clear-cutting. To prevent the overestimation of allowable cuts of economically important late-successional species, foresters could monitor post-clear-cut successional trajectories to assess whether setbacks were triggered. Post-clear-cut successional setbacks occurred in the two western ecological regions where climatic conditions are warmer and drier than in their eastern counterpart where no setbacks occurred. Hence, sustainability issues brought on by successional setbacks may be exacerbated by climate change. Finally, furthering our understanding of the transformation of successional dynamics by anthropogenic disturbances will be essential to insure sustainable forestry practices.

Predicting lumber grade occurrence and volume in sugar maple and yellow birch logs

Published in Forest Science. https://doi.org/10.1093/forsci/fxac019

The North American temperate deciduous forests are an important source of hardwoods sought after by the appearance wood products industries. The purpose of this study was to model the relationships between log characteristics and sawn board attributes in sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.). We harvested sixty-four sugar maple and thirty-two yellow birch trees from two locations in southern Quebec, Canada, which were then processed into 189 sawlogs and 2,236 boards. We developed statistical models linking log characteristics to the volume recovery of the various lumber grades and color specifications according to the National Hardwood Lumber Association rules. In both species, board grades were strongly related to log length, position of the log in the stem, and small-end diameter and decay of the log. Color classes were related to small-end diameter of the log and red heartwood diameter of the log at both ends for sugar maple, and to log length, diameter of the log at the small-end, and red heartwood diameter at the large-end of the log for yellow birch. These models outperformed a log classification used in practice for predicting lumber volume recovery from different log grades.

Broad-scale wood degradation dynamics in the face of climate change: A meta-analysis

Published in GCB Bioenergy. https://doi.org/10.1111/gcbb.12951

In the context of global change, a better understanding of the dynamics of wood degradation, and how they relate to tree attributes and climatic conditions, is necessary to improve broad-scale assessments of the contributions of deadwood to various ecological processes, and ultimately, for the development of adaptive post-disturbance management strategies. The objective of this meta-analysis was to review the effects of tree attributes and local climatic conditions on the time since death of coarse woody debris ranging in decomposition states. Results from our meta-analysis showed that projected warming will likely accelerate wood decomposition and significantly decrease the residence time in decay stages. By promoting such a decrease in residence time, further climate warming is very likely to alter the dynamics of deadwood, which in turn may affect saproxylic biodiversity by decreasing the temporal availability of specific habitats. Moreover, while coarse woody debris has been recognized as a key resource for bioenergy at the global scale, the acceleration of decay-stages transition dynamics indicates that the temporal window during which dead trees are available as feedstock for value-added products will shrink. Consequently, future planning and implementation of salvage harvesting will need to occur within a short period following disturbance, especially in warmer regions dominated by hardwood species. Another important contribution of this work was the development of a harmonized classification system that relies on the correspondence between the visual criteria used to characterize deadwood decomposition stages in locally developed systems the literature. This system could be used in future investigations to facilitate direct comparisons between studies. Our literature survey also highlights that most of the information on wood decay dynamics comes from temperate and boreal forests, whereas data from subtropical, equatorial and subarctic forests are scarce. Such data are urgently needed to allow broader-scale conclusions on global wood degradation dynamics.

Breeding for adaptation to climate change: genomic selection for drought response in a white spruce multi-site polycross test

Published in Evolutionary Applications 15(3): 383-402. https://doi.org/10.1111/eva.13348

With climate change, increasingly intense and frequent drought episodes will be affecting water availability for boreal tree species, prompting tree breeders and forest managers to consider adaptation to drought stress as a priority in their reforestation efforts. We used a 19-year- old polycross progeny test of the model conifer white spruce (Picea glauca) replicated on two sites affected by distinct drought episodes at different ages to estimate the genetic control and the potential for improvement of drought response in addition to conventional cumulative growth and wood quality traits. Drought response components were measured from dendrochronological signatures matching drought episodes in wood ring increment cores. We found that trees with more vigorous growth during their lifespan resisted better during the current year of a drought episode when the drought had more severe effects. Phenotypic data were also analyzed using genomic prediction (GBLUP) relying on the genomic relationship matrix of multi-locus gene SNP marker information, and conventional analysis (ABLUP) based on validated pedigree information. The accuracy of predicted breeding values for drought response components was marginally lower than that for conventional traits and comparable between GBLUP and ABLUP. Genetic correlations were generally low and nonsignificant between drought response components and conventional traits, except for resistance which was positively correlated to tree height. Heritability estimates for the components of drought response were slightly lower than for conventional traits, but similar single-trait genetic gains could be obtained. Multi-trait genomic selection simulations indicated that it was possible to improve simultaneously for all traits on both sites while sacrificing little on gain in tree height. In a context of rapid climate change, our results suggest that with careful phenotypic assessment, drought response may be considered in multi-trait improvement of white spruce, with accelerated screening of large numbers of candidates and selection at young age with genomic selection.