by Claire Morin | 14 September 2022
Published in Agricultural and Forest Meteorology 323: 109078. https://doi.org/10.1016/j.agrformet.2022.109078
Soil temperature (Tsoil) and soil water (θsoil) are fundamental variables that have an essential role in many processes in forest ecosystems, as well as influencing the tree species distribution and forest composition over time. We tested the Canadian Land Surface Scheme (CLASS) capacity to simulate Tsoil and θsoil in the boreal forest using a sixteen-year data set of daily measurements. Sensitivity analyses were also carried out to evaluate the impact of the thickness of organic layer (TOL), soil texture (percentage sand and clay: PS and PC), drainage parameter (DP), and water freezing point (FP) on simulated Tsoil and θsoil. Finally, the model was also calibrated with a combination of model parameters. CLASS well simulated Tsoil while its performance for θsoil varied by soil horizon and season. In winter particularly, soil liquid water was greatly underestimated because simulated Tsoil was below 0 ◦C. Nevertheless, simulated θsoil seasonal variation corresponded well with observations. Based on sensitivity analyses, TOL had an important effect on both Tsoil and θsoil. Although PS, PC and DP had almost no effect on Tsoil, their effects on θsoil were substantial. Tsoil increased throughout the year and θsoil increased during the winter with decreasing FP, yet the match between modelled θsoil and observations was not substantially improved. In general, Tsoil was well simulated by CLASS, except for the freezing during winter. Model calibration improves greatly both simulated Tsoil and θsoil, especially during winter in all soil layers. However, despite the model calibration, CLASS still requires improvement for modelling Tsoil and θsoil, hence emphasizing the need to review the equations governing these variables in CLASS.
by Claire Morin | 14 September 2022
Published in Science of the Total Environment 853: 158240. https://doi.org/10.1016/j.scitotenv.2022.158240
The widespread increase of dissolved organic carbon (DOC) in northern hemisphere surface waters have been generally attributed to the recovery from acidic deposition and to climatic variations. The long-term responses of DOC to environmental drivers could be better predicted with a better understanding of the mechanisms taking place at the soil level given organic forest soils are the main site of DOC production in forested watersheds. Here, we assess the long-term variation (25 years) of DOC concentration in the solution leaching from the soil organic layer (DOCOL)of a temperate forest. Our results show that DOCOL increased by 32 % (p < 0.001) during the period of study while the lake outlet DOC concentration did not show any changes. Weekly and annual models based on a simple set of explicative variables including throughfall DOC, throughfall precipitation, temperature, litterfall amounts and organic layer leachate calcium concentration (CaOL, taken as a proxy for soil solution ionic strength) explain between 17 and 58 % of the variance in DOCOL depending on model structures and temporal scales. Throughfall DOC and CaOL were both positively related to DOCOL in the models describing its variations at the weekly and annual scale. Temperature was positively correlated to DOCOL, probably due to increased microbial activity, while precipitation had a negative effect onDOCOL (only at the weekly scale), most probably due to a dilution effect. Contrary to our expectations, annual litterfall inputs had no impacts on annual DOCOL variations. Overall, the results shows that DOCOL control is a complex process implicating a set of environmental factors that are acting in different ways while no single variable alone can explain a large part of the variation in both, weekly or annual DOCOL variations.
by Claire Morin | 9 September 2022
Published in Annals of Forest Science 79(39). https://doi.org/10.1186/s13595-022-01152-w
Context: In temperate hardwood forests, increased intensity of soil and canopy disturbances tends to increase species richness due to the establishment of numerous early-successional plant species. However, while competitive pioneer species from early stages of succession can become recalcitrant and alter patterns of natural regeneration, very few studies have examined longer-term effects of these treatments on plant biodiversity.
Aims: In this study, we investigated mid-term (ca. 20 years) effects of different regeneration treatments with varying soil and canopy disturbance intensities. We compared understory plant communities in temperate hardwood forests from all the South of Quebec (Canada).
Methods: Using circular experimental plots of 1962.5 m2 (radius = 25 m), we measured taxonomic and functional diversity indices and soil properties using four levels of disturbance intensity in six temperate hardwood forests of Quebec distributed along a longitudinal gradient. Reference forests, i.e. control forests with no silvicultural treatment known for ≥ 80 years, were compared to 20-year-old single-tree selection cuts, group-selection cuts and group-selection cuts with soil scarification.
Results: Species richness in both group-selection treatments was higher than that in reference forests. Plant equitability and beta diversity among sites in both group-selection treatments were lower than in single-tree selection cuts and control forests. More intense treatments contributed to the mid-term persistence of recalcitrant competitor species (e.g. Rubus idaeus L., Prunus pensylvanica L.f.) whereas soil scarification appears to have negative sustained effects on species known to be sensitive to regeneration treatments (e.g. Monotropa uniflora L., Dryopteris spinulosa Kuhn).
Conclusions: In temperate hardwood forests of Southern Quebec, silvicultural treatments of higher intensities resulted in detrimental effects on soil properties, especially in the surface horizon, 20 years after disturbance. This legacy, in turn, affected the composition and diversity of understory plant communities. The more intense silvicultural treatments contributed to the persistence of pioneer species better adapted to a wider range of environmental conditions and resulted in a decrease in understory plant community heterogeneity among sites. Conversely, singletree selection cutting appeared to be the most appropriate silvicultural treatment for maintaining soil functions and heterogeneity of understory plant communities after 20 years; composition and structure being similar to long-undisturbed forests.
by Audrey Verreault | 25 August 2022
Published in Canadian Journal of Forest Research 52(8): 1186-1200. https://doi.org/10.1139/cjfr-2022-0073
The temperate mixedwood forests of eastern North America have been managed by partial cutting for several decades. To ensure that regeneration contributes to replacing the commercial-size stems that are removed by partial cutting, forest managers need to anticipate how saplings (i.e., regenerating trees with a diameter at breast height >1.0 cm) develop in terms of number and diameter. Using up to 20 years of monitoring data from three study sites, we developed a transition matrix model to predict the future number of saplings and their diameter distribution for mixed yellow birch (Betula alleghaniensis Britton) – conifer stands. Our results show that partial cutting allowed yellow birch, redmaple (Acer rubrum L.), red spruce (Picea rubens Sarg.), and balsam fir (Abies balsamea (L.) Mill.) saplings to reach merchantable size faster and in greater numbers than in untreated control plots.We also found that fewer hardwood saplings (yellow birch and red maple) than softwood saplings (red spruce and balsam fir) were required to produce 1 m2·ha−1 of merchantable basal area after 20–40 years. Finally, our model provides a tool for forest managers to predict sapling development in mixed hardwood and softwood stands over a full cutting cycle.
by Claire Morin | 24 August 2022
Published in Frontiers in Plant Science 13(920852). https://doi.org/10.3389/fpls.2022.920852
Global warming is predicted to extend the growing season of trees and plants, and advance spring phenology. However, intensification of extreme climate events in midlatitude forests, from weakening of the jet stream and atmospheric blockings, may expose trees to increased risk associated with more frequent late-spring frosts. Still, little is known regarding the intraspecific variation in frost tolerance and how it may be shaped by local adaptation to the climate of seed origin. As part of an assisted migration trial located in different bioclimatic zones in the province of Quebec, Canada, and following an extensive late-spring frost that occurred at the end of May 2021, we evaluated the frost damages on various white spruce (Picea glauca) seed sources tested on three sites (south, central, and north). The severity of frost damages was assessed on 5,376 trees after the cold spell and an early spring warming which advanced bud flush by approximately 10 days on average. The frost damage rate was similar among sites and seed sources and averaged 99.8%. Frost damage severity was unrelated to the latitude of seed origin but was variable among sites. The proportion of severely damaged trees was higher in the northern site, followed by central and southern sites. The proportion of severely damaged trees was linearly and inversely related to tree height before the frost event. Apical growth cancelation was not significantly different among seed sources including local ones, and averaged 74, 46, and 22%, respectively, in central, northern, and southern plantation sites. This study provides recommendations to limit the loss of plantation productivity associated with such a succession of spring climate anomalies. Implications for seed transfer models in the context of climate change and productivity of spruce plantations are discussed in the light of lack of local adaptation to such pronounced climate instability and ensuing large-scale maladaptation.