by Marie-Claude Boileau | 24 September 2021
Published in Canadian Journal of Forest Research 51(4): 595-603. https://doi.org/10.1139/cjfr-2020-0126
In land surface models, vegetation is often described using plant functional types (PFTs), a classification that aggregates plant species into a few groups based on similar characteristics. Within-PFT variability of these characteristics can introduce considerable uncertainty in the simulation of water fluxes in forests. Our objectives were to (i) compare the variability of the annual maximum leaf area index (LAImax) within and between PFTs and (ii) assess whether this variability leads to significant differences in simulated water fluxes at a regional scale. We classified our study region in southwestern Quebec (Canada) into three PFTs (evergreen needleleaf, deciduous broadleaf, and mixed forests) and characterized LAImax using remotely sensed MODIS-LAI data. We simulated water fluxes with the Canadian Land Surface Scheme (CLASS) and performed a sensitivity analysis. We found that within-PFT variability of LAImax was 1.7 times more important than variability between PFTs, with similar mean values for the two dominant PFTs, deciduous broadleaf forests (6.6 m2·m−2) and mixed forests (6.3 m2·m−2). In CLASS, varying LAImax within the observed range of values (4.0–7.5 m2·m−2) led to changes of less than 2% in mean evapotranspiration. Overall, LAImax is likely not an important driver of the spatial variability of water fluxes at the regional level.
by Marie-Claude Boileau | 24 September 2021
Published in Land 10(7): 661. https://doi.org/10.3390/land10070661
Growing Picea glauca seedlings poses many challenges for forest nursery managers, including reaching the target height at the end of the first growing season (1 + 0) and the homogeneity and uniformity of seedling growth. To increase growth and morphophysiological quality of white spruce seedlings (1 + 0), emphasis was placed on improving the physicochemistry of the acidic peat substrate by replacing silica with granular calcite as a covering material. The objective of our study is to compare the effects of silica and calcite on the physicochemistry of the peat substrate, as well as on growth and mineral nutrition of white spruce seedlings (1 + 0) under forest nursery conditions. Three treatments were used to cover the cavities of large white spruce seedlings produced in containers: silica (29 g/cavity; control treatment), calcite (24 g/cavity) and calcite + (31 g/cavity). At the end of the first growing season, the two calcite treatments significantly increased the total dry mass (28%), roots (27%) and shoot (29%) dry masses and height (24%) compared to silica treatments. Average calcium concentration and content of calcite treatments were significantly higher than that of silica treatment.
by Marie-Claude Boileau | 24 September 2021
Published in PeerJ 9: e11685. https://doi.org/10.7717/peerj.11685
Texture strongly influences the soil’s fundamental functions in forest ecosystems. In response to the growing demand for information on soil properties for environmental modeling, more and more studies have been conducted over the past decade to assess the spatial variability of soil properties on a regional to global scale. These investigations rely on the acquisition and compilation of numerous soil field records and on the development of statistical methods and technology. Here, we used random forest machine learning algorithms to model and map particle size composition in ecoforest polygons for the entire area of managed forests in the province of Quebec, Canada. We compiled archived laboratory analyses of 29,570 mineral soil samples (17,901 sites) and a set of 33 covariates, including 22 variables related to climate, five related to soil characteristics, three to spatial position or spatial context, two to relief and topography, and one to vegetation. After five repeats of 5-fold cross-validation, results show that models that include two functionally independent values regarding particle size composition explain 60%, 34%, and 78% of the variance in sand, silt and clay fractions, respectively, with mean absolute errors ranging from 4.0% for the clay fraction to 9.5% for the sand fraction. The most important model variables are those observed in the field and those interpreted from aerial photography regarding soil characteristics, followed by those regarding elevation and climate. Our results compare favorably with those of previous soil texture mapping studies for the same territory, in which particle size composition was modeled mainly from rasterized climatic and topographic covariates. The map we provide should meet the needs of provincial forest managers, as it is compatible with the ecoforest map that constitutes the basis of information for forest management in Quebec, Canada.
by Audrey Verreault | 24 September 2021
Published in Canadian Journal of Forest Research 52(1). https://doi.org/10.1139/cjfr-2021-0086
Fertilization of hybrid poplar (HP) plantations with papermill by-products is a promising solution to improve soil fertility and nutrient availability, increase plantation productivity, and provide added value to these materials that would otherwise be incinerated or sent to the landfill. We assessed the growth and foliar nutrition of a HP clone (Populus x. canadensis × P. maximowiczii) at six plantation sites aged three to five years in southern Quebec, Canada. Sites received a fertilization treatment consisting of a mixture of papermill biosolids (120 to 140 t ha-1, depending on site) and lime mud (10 to 15 t ha-1) before being planted, or no fertilization (control). Tree growth was significantly improved by fertilization, with fertilized trees showing a mean annual height increment of 1.3 m (all-site mean; SD = 0.2), compared with 0.5 m (SD = 0.4) for unfertilized trees. Foliar Ca and Mg increased following fertilization and levels met optimal thresholds at all sites, whereas N, P, and K concentrations also increased but nutritional deficiencies remained for these elements at several sites. Our results confirm the benefits of fertilizing hybrid poplars with papermill by-products, but indicate that adjustments in application rates or type of by-products could be made in order to fully satisfy nutritional requirements and thus optimize tree growth.
by equipewp | 5 August 2021
The population of Québec has a strong sense of belonging to the wildlife sanctuaries, and considers them to be natural environments in which conservation of biodiversity, wildlife development and fair access to land and wildlife are of particular importance.
This Management Framework, through the orientations it sets out, will help the wildlife sanctuary network to become a showcase for sustainable development and integrated resource management.
|