Following the appointment of the new Cabinet, the Forest Sector now reports to the ministère des Ressources naturelles et des Forêts, while the Wildlife and Parks Sectors report to the ministère de l'Environnement, de la Lutte aux changements climatiques, de la Faune et des Parcs. Adjustments will be made to the website over time.

A three-year increase in soil temperature and atmospheric N deposition has minor effects on the xylogenesis of mature balsam fir

Published in Trees https://doi.org/0.1007/s00468-013-0899-4.

Tree growth in most boreal forests is strongly regulated by temperature and nitrogen (N) availability. The expected increases in soil temperature and N deposition over the next decades have the potential to affect the phenology of tree growth and xylogenesis. To test for these changes on xylogenesis of balsam fir (Abies balsamea (L.) Mill), 12 mature trees were subjected to a combination of experimentally increased soil temperature (+4 °C) with an earlier snowmelt (2–3 weeks) and N deposition (3 x ambient rain N concentrations using NH4–NO3 in artificial precipitation) over a 3-year period. Increased soil temperature and atmospheric N deposition had no significant effect on the number of tracheids produced (38–51), tracheid diameter (27.2–29.0 mm) and cell wall thickness (2.5–3.1 mm). For the 3 years of treatment, xylogenesis was initiated at minimum and average daily air temperatures of 0.6 ± 0.5 and 6.5 ± 0.6 °C, respectively, with inter-annual differences of 17 days in the onset of xylogenesis. The earlier snowmelt induced by soil warming did not hasten resumption of xylogenesis, and the time dynamics of xylogenesis was not affected by higher N deposition. Our results suggest that soil temperature and the timing of snowmelt have no direct influence on the breaking of cambium dormancy in balsam fir. The short-term effects of increased soil temperature and N deposition on xylogenesis of mature balsam fir appear to be small compared with the effects of air temperature and are likely to be associated with a persistent N limitation.

Spatiotemporal evolution of paludification associated with autogenic and allogenic factors in the black spruce–moss boreal forest of Québec, Canada

Published in Quaternary Research: 91(2): 650-664 https://doi.org/10.1017/qua.2018.101

Paludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)-moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (less than or equal to 50 cm) and thick forest humus (less than 40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment of Sphagnum in microdepressions. Paludification resulted in the decline of some coniferous species such as Abies balsamea and Pinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.

Declining acidic deposition begins reversal of forest-soil acidification in the Northeastern U.S. and Eastern Canada

Published in Environmental Science and Technology 49(22): 13103-13111. https://doi.org/10.1021/acs.est.5b02904

Decreasing trends in acidic deposition levels over the past several decades have led to partial chemical recovery of surface waters. However, depletion of soil Ca from acidic deposition has slowed surface water recovery and led to the impairment of both aquatic and terrestrial ecosystems. Nevertheless, documentation of acidic deposition effects on soils has been limited, and little is known regarding soil responses to ongoing acidic deposition decreases. In this study, resampling of soils in eastern Canada and the northeastern U.S. was done at 27 sites exposed to reductions in wet SO42− deposition of 5.7−76%, over intervals of 8−24 y. Decreases of exchangeable Al in the O horizon and increases in pH in the O and B horizons were seen at most sites. Among all sites, reductions in SO42− deposition were positively correlated with ratios (final sampling/initial sampling) of base saturation (P < 0.01) and negatively correlated with exchangeable Al ratios (P < 0.05) in the O horizon. However, base saturation in the B horizon decreased at one-third of the sites, with no increases. These results are unique in showing that the effects of acidic deposition on North American soils have begun to reverse.

Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy

Published in Remote Sensing 11(3): 273. https://doi.org/10.3390/rs11030273

Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written automated software, from early spring through until autumn in 2011. The optical system was mounted on a tower of 18 m height adjacent to an eddy covariance system, to observe a boreal forest ecosystem dominated by Scots pine. (Pinus sylvestris) AWalz MONITORING-PAM, multi fluorimeter system, was simultaneously mounted within the canopy adjacent to the footprint sampled by the optical system. Following correction of the SiF data for O2 and structural effects, SiF, SiF yield, LUE, the photochemicsl reflectance index (PRI), and the normalized difference vegetation index (NDVI) exhibited a seasonal pattern that followed GPP sampled by the eddy covariance system. Due to the complexities of solar azimuth and zenith angle (SZA) over the season on the SiF signal, correlations between SiF, SiF yield, GPP, and LUE were assessed on SZA <50° and under strictly clear sky conditions. Correlations found, even under these screened scenarios, resulted around ~r2 = 0.3. The diurnal responses of SiF, SiF yield, PAM estimates of effective quantum yield (ΔF/Fm’), and meteorological parameters demonstrated some agreement over the diurnal cycle. The challenges inherent in SiF retrievals in boreal evergreen ecosystems are discussed.