by Audrey Verreault | 8 April 2024
Published in Forest Ecology and Management 555(2): 121731. http://dx.doi.org/10.1016/j.foreco.2024.121731
Climate, soil, and competition factors jointly drive tree growth variability at local and regional scale. However, the comprehensive interaction of these factors and their combined effects on tree responses within their environment remains poorly explored in current research. Using a detailed forest inventory dataset in Québec, we examined tree growth of balsam fir (Abies balsamea Mill), black spruce (Picea mariana Mill), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marshall), white birch (Betula papyrifera Marshall), and yellow birch (Betula alleghaniensis Britton), as a function of competition for light and space with neighboring trees, climate and soil-related variables. Interactions between all these variables were considered in a Bayesian model predicting tree growth. The amount of light received by trees was the main variables explaining tree growth except for coniferous tree species which was influenced mostly by climate variables. Among the studied species, only red maple and white birch exhibited increased growth under warmer conditions. Intraspecific competition had strong species-specific impacts, varying from negative effects for balsam fir, to positive for red maple and yellow birch. Interactions between climate, soil, and competition played a crucial role in shaping growth patterns, especially for sugar maple, and black spruce that strongly responded to a combination of climate and competition factors. In general, tree growth also increased with the soil cation-exchange capacity (CEC), especially when higher CEC is coupled with higher temperatures and precipitation, except for black spruce. While anticipated climate conditions in Quebec, even under the most optimistic scenarios, will have a strong negative impact on the tree growth of most tree species, management can mitigate this impact by promoting tree diversity with more complex stand structures.
by Marie-Claude Boileau | 27 March 2024
Published in Silva Fennica 58(2): 2309. https://doi.org/10.14214/sf.23029
Mechanical site preparation (MSP) is used prior to planting to control competing vegetation and enhance soil conditions, particularly in areas prone to paludification. Tree planting density can be adapted to the management context and objectives, as it influences yield and wood quality. However, the combined effects of MSP and planting density on understory vegetation composition, functional traits, and diversity remain uncertain. We thus conducted a study in the Clay Belt region of northwestern Quebec, Canada. After careful logging, the study area was divided into nine sites, each receiving one of three treatments: plowing, disc trenching, or no preparation. Sites were further divided into two, with black spruce (Picea mariana [Mill.] Britton, Sterns & Poggenb.) seedlings planted at either a low planting density of 1100 seedlings ha–1 or a high planting density of 2500 seedlings ha–1. After nine years, we assessed understory composition, diversity, key functional traits, sapling density and growth of planted trees. Careful logging alone led to a higher density of naturally established conifers compared to plowing or disc trenching. The interaction between planting density and MSP significantly influenced understory diversity and composition in plowed plots. Understory composition was affected by the soil C/N ratio, coniferous species, and deciduous species density. The growth of black spruce was notably enhanced with higher planting density in the plow treatment only. Neither planting density nor MSP alone affected tree height and diameter. Our results suggest that combining plowing with high-density planting can enhance stand growth and improve forest productivity. These findings guide future research on paludified forests.
by Claire Morin | 27 March 2024
Order made under the Quebec Fishery Regulations (1990) which modifies the content of this Regulation with regard to the periods, quotas, fishing gear and methods and the length or weight limits for fish applicable to the sport fishing for an area or part of it.
by Marie-Claude Boileau | 14 March 2024
Published in Ecological Applications e2958. https://doi.org/10.1002/eap.2958
The boreal forest is one of the world’s largest terrestrial biome and plays crucial roles in global biogeochemical cycles, such as carbon (C) sequestration in vegetation and soil. However, the impacts of decades of N deposition on N-limited ecosystems, like the eastern Canadian boreal forest, remain unclear. For 13 years, N deposition was simulated by periodically adding ammonium nitrate on soils of two boreal coniferous forests (i.e., balsam fir and black spruce) of eastern Canada, at low (LN) and high (HN) rates, corresponding to 3 and 10 times the ambient N deposition, respectively. We show that more than a decade of N addition had no strong effects on mineral soil C, N, P, and cation concentrations and on foliar total Ca, K, Mg, and Mn concentrations. In organic soil, C stock was not affected by N addition while N stock increased, and exchangeable Ca2+ and Mg2+ decreased at the balsam fir site under HN treatment. At both sites, LN treatment had nearly no impact on foliage and soil chemistry but foliar N and N:P significantly increased under HN treatment, potentially leading to foliar nutrient imbalance. Overall, our work indicates that, in the eastern Canadian boreal forest, soil and foliar nutrient concentrations and stocks are resilient to increasing N deposition potentially because, in the context of N limitation, extra N would be rapidly immobilized by soil micro-organisms and vegetation. These findings could improve modeling future boreal forest soil C stocks and biomass growth and could help in planning forest management strategies in eastern Canada.
by Marie-Claude Boileau | 14 March 2024
Published in BioInvasions Records 13(1): 1-8. https://doi.org/10.3391/bir.2024.13.1.01
The presence of non-native Asian earthworms in northeastern North America has raised concerns in the last decades following the observation of how intensely they can disturb the soil and initiate cascading effects in invaded areas. A recent study showed that the known northern distribution of these earthworms in northeastern North America reached the southern parts of the province of Ontario (Canada) as well as the northeastern states in the U.S.A. that border the province of Québec (Canada). In 2021, more specimens were found in southern Ontario and in the province of New Brunswick. Here we report the first record of a non-native Asian earthworm (Amynthas tokioensis) in the province of Québec, which confirms the progression of the invasive Asian earthworms in Canada.